Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 14: 693, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24112474

RESUMEN

BACKGROUND: Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. "bavariensis" (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. "finlandensis" (1). RESULTS: Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. CONCLUSIONS: Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues.


Asunto(s)
Grupo Borrelia Burgdorferi/genética , Genoma Bacteriano , Inestabilidad Genómica , Cromosomas Bacterianos/genética , Evolución Molecular , Humanos , Enfermedad de Lyme/microbiología , Modelos Genéticos , Sistemas de Lectura Abierta , Filogenia , Filogeografía , Plásmidos/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
2.
PLoS One ; 7(3): e33280, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22432010

RESUMEN

Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.


Asunto(s)
Borrelia burgdorferi/genética , Inestabilidad Genómica/genética , Genómica , Enfermedad de Lyme/microbiología , Plásmidos/genética , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/aislamiento & purificación , Cromosomas Bacterianos/genética , ADN Bacteriano/metabolismo , Variación Genética , Genoma Bacteriano , Recombinación Homóloga/genética , Humanos , Mutación/genética , Sistemas de Lectura Abierta/genética , Seudogenes/genética , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem/genética
3.
Genetics ; 189(3): 951-66, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21890743

RESUMEN

How genomic diversity within bacterial populations originates and is maintained in the presence of frequent recombination is a central problem in understanding bacterial evolution. Natural populations of Borrelia burgdorferi, the bacterial agent of Lyme disease, consist of diverse genomic groups co-infecting single individual vertebrate hosts and tick vectors. To understand mechanisms of sympatric genome differentiation in B. burgdorferi, we sequenced and compared 23 genomes representing major genomic groups in North America and Europe. Linkage analysis of >13,500 single-nucleotide polymorphisms revealed pervasive horizontal DNA exchanges. Although three times more frequent than point mutation, recombination is localized and weakly affects genome-wide linkage disequilibrium. We show by computer simulations that, while enhancing population fitness, recombination constrains neutral and adaptive divergence among sympatric genomes through periodic selective sweeps. In contrast, simulations of frequency-dependent selection with recombination produced the observed pattern of a large number of sympatric genomic groups associated with major sequence variations at the selected locus. We conclude that negative frequency-dependent selection targeting a small number of surface-antigen loci (ospC in particular) sufficiently explains the maintenance of sympatric genome diversity in B. burgdorferi without adaptive divergence. We suggest that pervasive recombination makes it less likely for local B. burgdorferi genomic groups to achieve host specialization. B. burgdorferi genomic groups in the northeastern United States are thus best viewed as constituting a single bacterial species, whose generalist nature is a key to its rapid spread and human virulence.


Asunto(s)
Borrelia burgdorferi/genética , Variación Genética/genética , Genoma Bacteriano/genética , Enfermedad de Lyme/microbiología , Recombinación Genética/genética , Selección Genética , Simpatría/genética , Adaptación Fisiológica/genética , Animales , Borrelia burgdorferi/fisiología , Secuencia Conservada , Evolución Molecular , Conversión Génica/genética , Especiación Genética , Humanos , Modelos Genéticos , Filogenia , Reproducibilidad de los Resultados , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...