Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(45): eabj1164, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34730993

RESUMEN

In solids, strong repulsion between electrons can inhibit their movement and result in a "Mott" metal-to-insulator transition (MIT), a fundamental phenomenon whose understanding has remained a challenge for over 50 years. A key issue is how the wave-like itinerant electrons change into a localized-like state due to increased interactions. However, observing the MIT in terms of the energy- and momentum-resolved electronic structure of the system, the only direct way to probe both itinerant and localized states, has been elusive. Here we show, using angle-resolved photoemission spectroscopy (ARPES), that in V2O3, the temperature-induced MIT is characterized by the progressive disappearance of its itinerant conduction band, without any change in its energy-momentum dispersion, and the simultaneous shift to larger binding energies of a quasi-localized state initially located near the Fermi level.

2.
Science ; 373(6557): 907-911, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34301856

RESUMEN

Many correlated systems feature an insulator-to-metal transition that can be triggered by an electric field. Although it is known that metallization takes place through filament formation, the details of how this process initiates and evolves remain elusive. We use in-operando optical reflectivity to capture the growth dynamics of the metallic phase with space and time resolution. We demonstrate that filament formation is triggered by nucleation at hotspots, with a subsequent expansion over several decades in time. By comparing three case studies (VO2, V3O5, and V2O3), we identify the resistivity change across the transition as the crucial parameter governing this process. Our results provide a spatiotemporal characterization of volatile resistive switching in Mott insulators, which is important for emerging technologies, such as optoelectronics and neuromorphic computing.

3.
Sci Rep ; 11(1): 15082, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301961

RESUMEN

In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate [Formula: see text], with Ni, Permalloy ([Formula: see text]) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in [Formula: see text] is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the [Formula: see text] with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.

4.
Nature ; 569(7756): 388-392, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043748

RESUMEN

Resistive switching, a phenomenon in which the resistance of a device can be modified by applying an electric field1-5, is at the core of emerging technologies such as neuromorphic computing and resistive memories6-9. Among the different types of resistive switching, threshold firing10-14 is one of the most promising, as it may enable the implementation of artificial spiking neurons7,13,14. Threshold firing is observed in Mott insulators featuring an insulator-to-metal transition15,16, which can be triggered by applying an external voltage: the material becomes conducting ('fires') if a threshold voltage is exceeded7,10-12. The dynamics of this induced transition have been thoroughly studied, and its underlying mechanism and characteristic time are well documented10,12,17,18. By contrast, there is little knowledge regarding the opposite transition: the process by which the system returns to the insulating state after the voltage is removed. Here we show that Mott nanodevices retain a memory of previous resistive switching events long after the insulating resistance has recovered. We demonstrate that, although the device returns to its insulating state within 50 to 150 nanoseconds, it is possible to re-trigger the insulator-to-metal transition by using subthreshold voltages for a much longer time (up to several milliseconds). We find that the intrinsic metastability of first-order phase transitions is the origin of this phenomenon, and so it is potentially present in all Mott systems. This effect constitutes a new type of volatile memory in Mott-based devices, with potential applications in resistive memories, solid-state frequency discriminators and neuromorphic circuits.

5.
Phys Rev Lett ; 122(5): 057601, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30821990

RESUMEN

The interdependences of different phase transitions in Mott materials are fundamental to the understanding of the mechanisms behind them. One of the most important relations is between the ubiquitous structural and electronic transitions. Using IR spectroscopy, optical reflectivity, and x-ray diffraction, we show that the metal-insulator transition is coupled to the structural phase transition in V_{2}O_{3} films. This coupling persists even in films with widely varying transition temperatures and strains. Our findings are in contrast to recent experimental findings and theoretical predictions. Using V_{2}O_{3} as a model system, we discuss the pitfalls in measurements of the electronic and structural states of Mott materials in general, calling for a critical examination of previous work in this field. Our findings also have important implications for the performance of Mott materials in next-generation neuromorphic computing technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...