Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inflamm Res ; 69(10): 1039-1051, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32666125

RESUMEN

INTRODUCTION: Mast cells are involved in not only inducing, but also maintaining neurogenic inflammation and neuropathic pain. In previous work, we have demonstrated that dehydroleucodine, xanthatin and 3-benzyloxymethyl-5H-furan-2-one inhibit rat peritoneal and human LAD2 mast cell degranulation induced by compound 48/80 and calcium ionophore A23187. However, the effect of these molecules on neuropeptide-induced mast cell activation has not been studied so far. OBJECTIVE: The aim of this study was to determine whether dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one inhibit neuropeptide-induced mast cell activation. METHODS: This work is based on in vitro simulation of a neurogenic inflammation scenario involving neuropeptides and mast cells, to subsequently analyze potential therapeutic strategies for neuropathic pain. RESULTS: Neuromedin-N did not stimulate mast cell serotonin release but substance P and neurotensin did induce serotonin release from peritoneal mast cells in a dose-dependent manner. Mast cell serotonin release induced by substance P and neurotensin was inhibited by dehydroleucodine and xanthatin, but not by 3-benzyloxymethyl-5H-furan-2-one. The inhibitory potency of dehydroleucodine and xanthatin was higher than that obtained with the reference compounds, ketotifen and sodium chromoglycate, when mast cells were preincubated with dehydroleucodine before substance P incubation, and with dehydroleucodine or xanthatin before neurotensin incubation. CONCLUSIONS: These results are the first strong evidence supporting the hypothesis that dehydroleucodine and xanthatin inhibit substance P- and neurotensin-induced serotonin release from rat peritoneal mast cells. Our findings suggest, additionally, that these α,ß-unsaturated lactones could be of value in future pharmacological research related to inappropriate mast cell activation conditions such as neurogenic inflammation and neuropathic pain.


Asunto(s)
Lactonas/farmacología , Mastocitos/efectos de los fármacos , Inflamación Neurogénica/metabolismo , Neurotensina/farmacología , Fragmentos de Péptidos/farmacología , Serotonina/metabolismo , Sustancia P/farmacología , Animales , Células Cultivadas , Mastocitos/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA