Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-37976964

RESUMEN

Nocardiosis has caused high mortalities among fish cultures; however, the effects of Nocardia infections in the fish gastrointestinal microbiota are unknown. In this research, tilapia was infected with Nocardia sp., to analyze the effect of infection on the gastrointestinal microbiota. Tilapia infected with Nocardia sp. reported a 46 % survival (100 % in non-infected). Moreover, the infection caused severe damage to the stomach microbiota, with a loss of diversity and a significant increase of Proteobacteria (94.8 %), resulting in a negative correlation network between Proteobacteria and other important phyla. Nocardia sp. is an emerging pathogen capable of inducing dysbiosis and causing significant mortalities.


Asunto(s)
Microbioma Gastrointestinal , Nocardiosis , Nocardia , Tilapia , Animales , Disbiosis , Nocardiosis/veterinaria , Nocardiosis/microbiología
3.
Animals (Basel) ; 13(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067066

RESUMEN

This work aimed to determine the presence of bacterial pathogens in fish with a clinical picture suggestive of infectious disease in Nile tilapia reared in Chiapas, Mexico. Blood and viscera samples were taken from healthy and diseased animals from commercial farms. Clinical and pathological examinations of each individual were performed and samples were collected for bacteriological studies. The bacterial isolates were identified and characterized by culture, biochemical tests, antibiogram, challenge tests and 16S rRNA sequencing. Staphylococcus haemolyticus and Providencia vermicola were isolated from various diseased organisms. The clinical picture caused by Staphylococcus haemolyticus was characterized by appetite disorders, neurological signs, nodulation or ulceration in different areas and congestion or enlargement of internal organs. Providenciosis in juvenile specimens caused a characteristic picture of hemorrhagic septicemia. Challenge tests performed in healthy organisms revealed that both infections caused higher mortality rates in fish (p < 0.05) compared with non-infected specimens, with 100% survival. There was 100% mortality for animals infected with P. vermicola after three days post infection and 45% for those infected with S. haemolyticus. The isolation and identification of two pathogens involved in an infection process were achieved and cataloged as potential causal agents of disease outbreaks in tilapia farming in Mexico. This is the first report of possible bacterial infection caused by S. haemolyticus and P. vermicola in tilapia farms, which are two uncommon but potentially emerging pathogens for the species.

4.
PeerJ ; 11: e16213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842054

RESUMEN

Tilapia species are among the most cultivated fish worldwide due to their biological advantages but face several challenges, including environmental impact and disease outbreaks. Feed additives, such as probiotics, prebiotics, and other microorganisms, have emerged as strategies to protect against pathogens and promote immune system activation and other host responses, with consequent reductions in antibiotic use. Because these additives also influence tilapia's gut microbiota and positively affect the tilapia culture, we assume it is a flexible annex organ capable of being subject to significant modifications without affecting the biological performance of the host. Therefore, we evaluated the effect of probiotics and other additives ingested by tilapia on its gut microbiota through a meta-analysis of several bioprojects studying the tilapia gut microbiota exposed to feed additives (probiotic, prebiotic, biofloc). A total of 221 tilapia gut microbiota samples from 14 bioprojects were evaluated. Alpha and beta diversity metrics showed no differentiation patterns in relation to the control group, either comparing additives as a group or individually. Results also revealed a control group with a wide dispersion pattern even when these fish did not receive additives. After concatenating the information, the tilapia gut core microbiota was represented by four enriched phyla including Proteobacteria (31%), Fusobacteria (23%), Actinobacteria (19%), and Firmicutes (16%), and seven minor phyla Planctomycetes (1%), Chlamydiae (1%), Chloroflexi (1%), Cyanobacteria (1%), Spirochaetes (1%), Deinococcus Thermus (1%), and Verrucomicrobia (1%). Finally, results suggest that the tilapia gut microbiota is a dynamic microbial community that can plastically respond to feed additives exposure with the potential to influence its taxonomic profile allowing a considerable optimal range of variation, probably guaranteeing its physiological function under different circumstances.


Asunto(s)
Microbiota , Probióticos , Tilapia , Animales , Tilapia/microbiología , Prebióticos , Probióticos/farmacología , Bacterias , Acuicultura
5.
PeerJ ; 11: e15596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37489125

RESUMEN

Crustins are antimicrobial peptides and members of the four-disulfide core (4-DSC) domain-containing proteins superfamily. To date, crustins have only been reported in crustaceans and possess a structural signature characterized by a single 4-DSC domain and one cysteine-rich region. The high-throughput sequencing technologies have produced vastly valuable genomic information that sometimes dilutes information about previously sequenced molecules. This study aimed (1) to corroborate the loss of valuable descriptive information regarding crustin identification when high throughput sequencing carries out automatic annotation processes and (2) to detect possible crustin sequences reported in Penaeids to attempt a list considering structural similarities, which allows the establishment of phylogenetic relationships based on molecular characteristics. All crustins sequences reported in Penaeids and registered in the databases were obtained. The first list was made with the proteins reported as crustin or carcinin, excluding those that did not meet the structural characteristics. Subsequently, using local alignments, sequences were sought with high similarity even if they had been reported with a different name of crustin but with a probability of being crustin. This broader list, including proteins with high structural similarity, can help establish phylogenetic relationships of shrimp genes and the evolutionary trajectory of this antimicrobial distributed exclusively among crustaceans. Results revealed that in most sequences obtained by Sanger or transcriptomics, which met the structural criteria, the identification was correctly established as crustin. Contrarily, the sequences corresponding to crustins obtained by whole genome sequencing projects were incorrectly classified or not characterized, being momentarily "buried" in the information generated. In addition, the sequences that complied with the criteria of crustin tended to be grouped into species separated by geographical regions; for example, the crustins of the inhabitant shrimp of the American coasts differ from those corresponding to the natives of the Asian coasts. Finally, the results suggest the convenience of annotations considering the previous but correct information, even if such information was generated with previous technologies.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Penaeidae , Filogenia , Penaeidae/genética , Asia
7.
Artículo en Inglés | MEDLINE | ID: mdl-34419575

RESUMEN

Bacterial diseases represent the main impediment to the development of fish aquaculture. Granulomatous diseases caused by bacteria lead to fish culture losses by high mortality rates and slow growth. Bacteria belonging to genera Streptococcus spp., Mycobacterium sp., Nocardia sp., Francisella sp., and Staphylococcus sp. have been implicated in the development of granulomatous processes. The granuloma formation and the fish's immune response continue to be the subject of scientific research. In fish, the first defense line is constituted by non-specific humoral factors through growth-inhibiting substances such as transferrin and antiproteases, or lytic effectors as lysozyme and antimicrobial peptides, and linking with non-specific phagocyte responses. If the first line is breached, fish produce antibody constituents for a specific humoral defense inhibiting bacterial adherence, as well as the mobilization of non-phagocytic host cells and counteracting toxins from bacteria. However, bacteria causing granulomatous diseases can be persistent microorganisms, difficult to eliminate that can cause chronic diseases, even using some immune system components to survive. Understanding the infectious process leading to granulomatosis and how the host's immune system responds against granulomatous diseases is crucial to know more about fish immunology and develop strategies to overcome granulomatous diseases.


Asunto(s)
Infecciones Bacterianas/complicaciones , Enfermedades de los Peces/inmunología , Peces/inmunología , Granuloma/complicaciones , Animales , Infecciones Bacterianas/microbiología , Enfermedades de los Peces/microbiología , Peces/microbiología , Granuloma/microbiología , Inmunidad Innata
8.
PeerJ ; 9: e11827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34414030

RESUMEN

The shrimp gut is a long digestive structure that includes the Foregut (stomach), Midgut (hepatopancreas) and Hindgut (intestine). Each component has different structural, immunity and digestion roles. Given these three gut digestive tract components' significance, we examined the bacterial compositions of the Foregut, Hindgut, and Midgut digestive fractions. Those bacterial communities' structures were evaluated by sequencing the V3 hypervariable region of the 16S rRNA gene, while the functions were predicted by PICRUSt2 bioinformatics workflow. Also, to avoid contamination with environmental bacteria, shrimp were maintained under strictly controlled conditions. The pairwise differential abundance analysis revealed differences among digestive tract fractions. The families Rhodobacteraceae and Rubritalaceae registered higher abundances in the Foregut fraction, while in the Midgut, the families with a higher proportion were Aeromonadaceae, Beijerinckiaceae and Propionibacteriaceae. Finally, the Cellulomonadaceae family resulted in a higher proportion in the Hindgut. Regarding the predicted functions, amino acid and carbohydrate metabolism pathways were the primary functions registered for Foregut microbiota; conversely, pathways associated with the metabolism of lipids, terpenoids and polyketides, were detected in the Midgut fraction. In the Hindgut, pathways like the metabolism of cofactors and vitamins along with energy metabolism were enriched. Structural changes were followed by significant alterations in functional capabilities, suggesting that each fraction's bacteria communities may carry out specific metabolic functions. Results indicate that white shrimp's gut microbiota is widely related to the fraction analyzed across the digestive tract. Overall, our results suggest a role for the dominant bacteria in each digestive tract fraction, contributing with a novel insight into the bacterial community.

9.
Fish Physiol Biochem ; 47(4): 1179-1198, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34164770

RESUMEN

The aquaculture industry's rapid growth to meet commercial demand can trigger an outbreak of infectious diseases due to high-density farming. Antibiotic overuse and misuse in fish farming and its global health consequences have led to searching for more natural alternatives such as medicinal plants. In this sense, garlic (Allium sativum) has different bioactive compounds with biological properties for animal health. Among them are the ajoene, alliin, and allicin, which confer biological properties such as growth promotion, antimicrobial, antiviral, antioxidant, and antiparasitic. Ways to use garlic in aquaculture include oil, fresh mash, aqueous extract, and garlic powder. The powder presentation is the most used in aquaculture; it is generally applied by oral administration, adding to the feed, and the dose used ranges from 0.05 to 40 g/kg of feed. Garlic has been used in the aquaculture of different species such as rainbow trout (Oncorhynchus mykiss), spotted grouper (Epinephelus coioides), catfish (Clarias gariepinus), tilapia (Oreochromis niloticus), guppy fish (Poecilia reticulata), goldfish (Carassius auratus), and barramundi (Lates calcarifer). In addition to its properties, garlic's usage became popular, thanks to its low cost, easy incorporation into food, and little environmental impact. Therefore, its application can be an effective solution to combat diseases, improve organisms' health using natural supplies, and as an alternative to antibiotics. This review reports and discusses plant-derived products' beneficial properties, emphasizing garlic and its usages in fish aquaculture.


Asunto(s)
Acuicultura , Ajo , Adyuvantes Inmunológicos/farmacología , Animales , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Peces/crecimiento & desarrollo , Peces/inmunología , Peces/metabolismo , Peces/microbiología
10.
Int J Food Sci Nutr ; 71(1): 74-83, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31170834

RESUMEN

This study evaluated the effect of using arabinoxylans (AX) and gelled arabinoxylans (AxGel) as anti-obesogenic agents on the faecal microbiota of rats fed with a high-fat (HF) diet. Results revealed that the HF content in diet caused obesity in rats and alterations in the taxonomic and functional profiles of faecal microbiota. However, these effects were lessened when AX and AxGel were used as ingredients of the HF diet. Metabolisms of amino acids and energy, as well as genetic information processing, were negatively affected when the rats consumed the HF diet; however, this effect was not observed if AX and AxGel were included as part of the diet formulation. Results suggest that AX may act as a prebiotic agent. Therefore, AX and AxGel could be considered as hypothetical protectors of the intestinal microbiota against HF consumption.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Xilanos/farmacología , Animales , Bacterias/clasificación , Bacterias/genética , Índice de Masa Corporal , Modelos Animales de Enfermedad , Grano Comestible , Heces/microbiología , Microbioma Gastrointestinal/genética , Masculino , Ratones Obesos , Obesidad , Prebióticos , ARN Ribosómico 16S/genética , Ratas
11.
Biotechnol Genet Eng Rev ; 35(1): 69-91, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30221593

RESUMEN

The increased global demand for food production has motivated agroindustries to increase their own levels of production. Scientific efforts have contributed to improving these production systems, aiding to solve problems and establishing novel conceptual views and sustainable alternatives to cope with the increasing demand. Although microorganisms are key players in biological systems and may drive certain desired responses toward food production, little is known about the microbial communities that constitute the microbiomes associated with agricultural and veterinary activities. Understanding the diversity, structure and in situ interactions of microbes, together with how these interactions occur within microbial communities and with respect to their environments (including hosts), constitutes a major challenge with an enormous relevance for agriculture and biotechnology. The emergence of high-throughput sequencing technologies, together with novel and more accessible bioinformatics tools, has allowed researchers to learn more about the functional potential and functional activity of these microbial communities. These tools constitute a relevant approach for understanding the metabolic processes that can occur or are currently occurring in a given system and for implementing novel strategies focused on solving production problems or improving sustainability. Several 'omics' sciences and their applications in agriculture are discussed in this review, and the usage of functional metagenomics is proposed to achieve substantial advances for food agroindustries and veterinary sciences.


Asunto(s)
Microbiología de Alimentos , Metagenómica/métodos , Plantas/microbiología , Animales , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Abastecimiento de Alimentos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética
12.
Heliyon ; 3(7): e00370, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28795166

RESUMEN

The use of k-mers has been a successful strategy for improving metagenomics studies, including taxonomic classifications, or de novo assemblies, and can be used to obtain sequences of interest from the available databases. The aim of this manuscript was to propose a simple but efficient strategy to generate k-mers and to use them to obtain and analyse in silico 16S rRNA sequence fragments. A total of 513,309 bacterial sequences contained in the SILVA database were considered for the study, and homemade PHP scripts were used to search for specific nucleotide chains, recover fragments of bacterial sequences, make calculations and organize information. Consensus sequences matching conserved regions were constructed by aligning most of the primers used in the literature. Sequences of k nucleotides (9- to 15-mers) were extracted from the generated primer contigs. Frequency analysis revealed that k-mer size was inversely proportional to the occurrence of k-mers in the different conserved regions, suggesting a stringency relationship; high numbers of duplicate reactions were observed with short k-mers, and a lower proportion of sequences were obtained with large ones, with the best results obtained using 12-mers. Using 12-mers with the proposed method to obtain and study sequences was found to be a reliable approach for the analysis of 16S rRNA sequences and this strategy may probably be extended to other biomarkers. Furthermore, additional applications such as evaluating the degree of conservation and designing primers and other calculations are proposed as examples.

13.
Dev Comp Immunol ; 76: 9-17, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28512012

RESUMEN

Crustins are considered effector molecules of innate immunity in arthropods, and classification schemes have been proposed over the last 10 years. However, classification problems have emerged: for example, proteins that have been well identified as members of a particular category have also been classified as crustins. Therefore, the objective of this manuscript was to analyze and, based on solid arguments, improve the original proposed nomenclature to make crustins a distinctive group of antibacterial proteins. The presence of WAP or 4DSC domain has been considered a distinctive feature of crustins; however, several antibacterial proteins containing WAP domains have been detected in diverse taxonomic groups (including mammals). Here, we present evidence supporting the idea that the Cys-rich region and the 4DSC domain can be considered a signature of crustins and, together with some distance arrangements occurring within this 12-Cys region, yield enough information for the classification of these proteins. Herein, the core characteristics to be considered for classification purposes are the length of the Gly-rich region and the repetitive tetrapeptides occurring within this region; these characteristics are then hierarchically followed by the F and A distances located within the 4DSC domain. Finally, the proposed system considers the crustin signature as the common structure in all members, which is a differentiator from other proteins containing WAP domains, separating crustins as a well-distinguished member of the superfamily of WAP-domain containing proteins.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Artrópodos/genética , Secuencia de Aminoácidos , Animales , Artrópodos/genética , Inmunidad Innata/genética , Alineación de Secuencia
14.
RNA Biol ; 14(11): 1514-1521, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28440695

RESUMEN

The size distribution of complete 16S-rRNA sequences from the SILVA-database and nucleotide shifts that might interfere with the secondary structure of the molecules were evaluated. Overall, 513,309 sequences recorded in SILVA were used to estimate the size of hypervariable regions of the gene. Redundant sequences were treated as a single sequence to achieve a better representation of the molecular diversity. Nucleotides found in each position in 95% of the sequences were considered the consensus sequences for different size-groups (consensus95). The sizes of different regions ranged from 96.7 to 283.1 nucleotides and had similar distribution patterns, except for the V3 region, which exhibited a bimodal distribution composed of 2 main peaks of 161 and 186 nt. The alignment of Consensuses95 of fractions 161 and 186 showed a high degree of similarity and conservation, except for the central positions (gap zone), where the sequence was highly variable and several deletions were observed. Structurally, the gap zone forms the central part of helix 17 (H17), and its extension was directly reflected in the size of this helix. H17 is part of a multihelix conjunction known as the 5-way junction (5 WJ), which is indispensable for 30 S ribosome assembly. However, because a drastic variation in the sequence size of V3 region occurs at a central position in loop H17 without affecting the base of the loop, it has no apparent effect on 5 WJ. Finally, considering that these differences were detected in non-redundant sequences, it can be concluded that this is not an uncommon or isolated event and that the V3 region is possibly more likely to mutate than are other regions.


Asunto(s)
Bacterias/genética , Genes Bacterianos , Metagenoma , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Bacterias/clasificación , Emparejamiento Base , Secuencia de Bases , Secuencia de Consenso , Bases de Datos Genéticas , Variación Genética , Conformación de Ácido Nucleico , Filogenia
15.
PeerJ ; 5: e3036, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28265511

RESUMEN

The 16S rRNA gene has been used as master key for studying prokaryotic diversity in almost every environment. Despite the claim of several researchers to have the best universal primers, the reality is that no primer has been demonstrated to be truly universal. This suggests that conserved regions of the gene may not be as conserved as expected. The aim of this study was to evaluate the conservation degree of the so-called conserved regions flanking the hypervariable regions of the 16S rRNA gene. Data contained in SILVA database (release 123) were used for the study. Primers reported as matches of each conserved region were assembled to form contigs; sequences sizing 12 nucleotides (12-mers) were extracted from these contigs and searched into the entire set of SILVA sequences. Frequency analysis shown that extreme regions, 1 and 10, registered the lowest frequencies. 12-mer frequencies revealed segments of contigs that were not as conserved as expected (≤90%). Fragments corresponding to the primer contigs 3, 4, 5b and 6a were recovered from all sequences in SILVA database. Nucleotide frequency analysis in each consensus demonstrated that only a small fraction of these so-called conserved regions is truly conserved in non-redundant sequences. It could be concluded that conserved regions of the 16S rRNA gene exhibit considerable variation that has to be considered when using this gene as biomarker.

16.
Heliyon ; 2(9): e00170, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27699286

RESUMEN

The classification performance of Kraken was evaluated in terms of sensitivity and specificity when using short and long 16S rRNA sequences. A total of 440,738 sequences from bacteria with complete taxonomic classifications were downloaded from the high quality ribosomal RNA database SILVA. Amplicons produced (86,371 sequences; 1450 bp) by virtual PCR with primers covering the V1-V9 region of the 16S-rRNA gene were used as reference. Virtual PCRs of internal fragments V3-V4, V4-V5 and V3-V5 were performed. A total of 81,523, 82,334 and 82,998 amplicons were obtained for regions V3-V4, V4-V5 and V3-V5 respectively. Differences in depth of taxonomic classification were detected among the internal fragments. For instance, sensitivity and specificity of sequences classified up to subspecies level were higher when the largest internal fraction (V3-V5) was used (54.0 and 74.6% respectively), compared to V3-V4 (45.1 and 66.7%) and V4-V5 (41.8 and 64.6%) fragments. Similar pattern was detected for sequences classified up to more superficial taxonomic categories (i.e. family, order, class…). Results also demonstrate that internal fragments lost specificity and some could be misclassified at the deepest taxonomic levels (i.e. species or subspecies). It is concluded that the larger V3-V5 fragment could be considered for massive high throughput sequencing reducing the loss of sensitivity and sensibility.

17.
J Microbiol Methods ; 122: 38-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26812576

RESUMEN

Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.


Asunto(s)
Bacterias/genética , ADN Ribosómico/clasificación , Metagenómica/métodos , ARN Ribosómico 16S/clasificación , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Bacterias/clasificación , Clonación de Organismos/métodos , Biología Computacional/métodos , Código de Barras del ADN Taxonómico/métodos , ADN Ribosómico/análisis , ADN Ribosómico/genética , Bases de Datos Genéticas , Escherichia coli/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad , Programas Informáticos
18.
Fungal Biol ; 119(4): 264-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25813513

RESUMEN

The present study determined the activity of hydrolytic enzymes and the gene expression during direct interaction of the novelTrichoderma asperellumstrains TC74 (high antagonistic capacity) and Th1 (low antagonistic capacity) with the plant pathogenic fungusPhymatotrichopsis omnivora. TheT. asperellumstrains produced the lytic enzymes endochitinase, N-acetylglucosaminidase and ß-1,3-glucanase when grown on two different carbon sources. The response of strain TC74 was more rapid than that of strain Th1. When directly exposed toP. omnivora, theT. asperellumstrains expressed one endochitinase and one N-acetylglucosaminidase, as shown by RT-PCR experiments. The strains also expressed two ß-1,3-exoglucanases (designated as exg290 and exg343). TC74 and Th1 were able to express their chitinases and ß-1,3-exoglucanase activities when grown on the different carbon sources tested. When theT. asperellumstrains were grown in the presence ofP. omnivora, qRT-PCR experiments revealed that mycoparasitism-related genes were first expressed prior to contact between the antagonist and the pathogen's mycelium. As a general response, the transcription level of these genes was increased at the post-contact stage. Although TC74 and Th1 both express the assayed genes when grown in direct contact withP. omnivora, significant differences in the time, intensity and kinetics of the response were observed.


Asunto(s)
Ascomicetos/enzimología , Interacciones Huésped-Parásitos , Hidrolasas/análisis , Interacciones Microbianas , Ascomicetos/genética , Ascomicetos/fisiología , Perfilación de la Expresión Génica , Gossypium/microbiología , Hidrolasas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
19.
Fish Shellfish Immunol ; 33(1): 134-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22542646

RESUMEN

A clone encoding a four-Kazal domain-containing protein was isolated from the hemostats of a Penaeus vannamei cDNA library. The full-length cDNA sequence is 975 bp in length and encodes a 24.4 kDa protein (228 residues). Four Kazal domains, each 43-46 residues in length, were detected in the deduced primary structure. The first, third and fourth domains have the CPLREELPVC, CPAVYDPVC and CPLYVDPVC motifs, respectively, suggesting that they are able to inhibit chymotrypsin and elastase. The mRNA levels of the Kazal protein were modified after the injection of Vibrio alginolyticus, indicating the probable role of this protein in the immune response. All these characteristics are similar to previously reported shrimp Kazal, however, based on both domain architecture and expression profile following Vibrio stimulation, this protein represents a new type of Kazal inhibitor associated with shrimp immunity.


Asunto(s)
Penaeidae/genética , Penaeidae/inmunología , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Penaeidae/enzimología , Penaeidae/microbiología , Filogenia , Alineación de Secuencia , Inhibidores de Serina Proteinasa/química , Vibrio alginolyticus/inmunología
20.
Aquac Res ; 41(10): 1432-1443, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32313428

RESUMEN

The yellow head virus (YHV) has been reported to be one of most pathogenic viruses for cultivated shrimp; however, serious problems have only been reported in farms in south and southeastern Asian. Recently, a YHV strain was detected in Litopenaeus vannamei cultivated in Mexican farms that lacked virus-associated mortalities or epizooties, and the animals were apparently healthy. The identity of the virus was confirmed by sequencing replicative and structural protein-encoding regions and comparing with homologous virus sequences. Phylogenic relationships and genetic distances were also determined and, although some differences were observed, an influence on virulence was uncertain. In addition, the expression levels of several transcripts (3CLPRO, POL, GP64 and GP116) were evaluated by quantitative real-time polymerase chain reaction during an experimental infection. Although the transcript showed varying kinetics, viral genes were expressed in infected L. vannamei, demonstrating the replicative capability of this YHV strain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...