Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446312

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Células Endoteliales/metabolismo , Ratones Transgénicos , Angiopatía Amiloide Cerebral/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835161

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aß) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estudio de Asociación del Genoma Completo , Mutación , Enfermedades Neurodegenerativas/genética , Presenilina-1/genética , Presenilina-2/genética
3.
Behav Brain Res ; 423: 113776, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35120930

RESUMEN

High-fat diet (HFD) consumption has been related to metabolic alterations, such as obesity and cardiovascular problems, and has pronounced effects on brain plasticity and memory impairment. HFD exposure has a pro-inflammatory effect associated with microglial cell modifications in the hippocampus, a region involved in the working memory process. Immune tolerance can protect from inflammation in periphery induced by HFD consumption, when the immune response is desensitized in development period with lipopolysaccharide (LPS) exposure, maybe this previously state can change the course of the diseases associated to HFDs but is not known if can protect the hippocampus's inflammatory response. In the present study, male mice were injected with LPS (100 µg.kg-1 body weight) on postnatal day 3 and fed with HFD for 16 weeks after weaning. Ours results indicated that postnatal exposure to LPS in the early postnatal developmental stage combined with HFD consumption prevented glycemia, insulin, HOMA-IR, microglial process, and increased pro-inflammatory cytokines mRNA expression, without changes in body weight gain and spatial working memory with respect vehicle + HFD group. These findings suggest that HFD consumption after postnatal LPS exposure induces hippocampal immune tolerance, without prevention in spatial working memory impairment on male mice.


Asunto(s)
Dieta Alta en Grasa , Hipocampo/inmunología , Tolerancia Inmunológica , Lipopolisacáridos/farmacología , Trastornos de la Memoria/inmunología , Animales , Animales Recién Nacidos , Lipopolisacáridos/administración & dosificación , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Memoria Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...