Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 15(1): 3059, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637500

RESUMEN

The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.


Asunto(s)
Mpox , Orthopoxvirus , Poxviridae , Humanos , Monkeypox virus/genética , Genómica , Mpox/genética
2.
Euro Surveill ; 28(49)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38062945

RESUMEN

To advance our understanding of respiratory syncytial virus (RSV) impact through genomic surveillance, we describe two PCR-based sequencing systems, (i) RSVAB-WGS for generic whole-genome sequencing and (ii) RSVAB-GF, which targets major viral antigens, G and F, and is used as a complement for challenging cases with low viral load. These methods monitor RSV genetic diversity to inform molecular epidemiology, vaccine effectiveness and treatment strategies, contributing also to the standardisation of surveillance in a new era of vaccines.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Proteínas Virales de Fusión/genética , Vacunas contra Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Genómica , Secuenciación Completa del Genoma , Anticuerpos Antivirales
3.
Viruses ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38140614

RESUMEN

West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases were scarce and mostly occurred in southern Spain. Since then, there have been new cases every year and the pathogen has spread to new regions. Thus, monitoring of circulating variants and lineages plays a fundamental role in understanding WNV evolution, spread and dynamics. In this study, we sequenced WNV consensus genomes from mosquito pools captured in 2022 as part of a newly implemented surveillance program in southern Spain and compared it to other European, African and Spanish sequences. Characterization of WNV genomes in mosquitoes captured in 2022 reveals the co-circulation of two WNV lineage 1 variants, the one that caused the outbreak in 2020 and another variant that is closely related to variants reported in Spain in 2012, France in 2015, Italy in 2021-2022 and Senegal in 2012-2018. The geographic distribution of these variants indicates that WNV L1 dynamics in southern Europe include an alternating dominance of variants in some territories.


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/epidemiología , España/epidemiología , Europa (Continente)/epidemiología
4.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569847

RESUMEN

Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Lípidos , Cirrosis Hepática/etiología , Organoides , alfa 1-Antitripsina/genética
5.
Viruses ; 15(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851481

RESUMEN

Emerging infectious diseases are one of the most important global health challenges because of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. The local circulation of WNV in Spain has been known for decades, and since 2010, there have been regular outbreaks in horses, although only six cases were reported in humans until 2019. In 2020, Spain experienced a major outbreak with 77 human cases, which was followed by 6 additional cases in 2021, most of them in the Andalusian region (southern Spain). This study aimed to characterize the genomes of the WNV circulating in wild-trapped mosquitoes during 2020 and 2021 in Andalusia. We sequenced the WNV consensus genome from two mosquito pools and carried out the phylogenetic analyses. We also compared the obtained genomes with those sequenced from human samples obtained during the outbreak and the genomes obtained previously in Spain from birds (2007 and 2017), mosquitoes (2008) and horses (2010) to better understand the eco-epidemiology of WNV in Spain. As expected, the WNV genomes recovered from mosquito pools in 2020 were closely related to those recovered from humans of the same outbreak. In addition, the strain of WNV circulating in 2021 was highly related to the WNV strain that caused the 2020 outbreak, suggesting that WNV is overwintering in the area. Consequently, future outbreaks of the same strain may occur in in the future.


Asunto(s)
Culicidae , Virus del Nilo Occidental , Humanos , Animales , Caballos , Virus del Nilo Occidental/genética , Filogenia , España/epidemiología , Mosquitos Vectores , Genómica , Brotes de Enfermedades
6.
Cancers (Basel) ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139614

RESUMEN

To explore the relationship between cancer cell SREBF1 expression, lipid droplets (LDs) formation, and the sensitivity to chemotherapies, we cultured lung adenocarcinoma cells H1299 (with LD) and H1563 (without LD) in a serum-free basal medium (BM) or neutrophil degranulation products containing medium (NDM), and tested cell responses to cisplatin and etoposide. By using the DESeq2 Bioconductor package, we detected 674 differentially expressed genes (DEGs) associated with NDM/BM differences between two cell lines, many of these genes were associated with the regulation of sterol and cholesterol biosynthesis processes. Specifically, SREBF1 markedly declined in both cell lines cultured in NDM or when treated with chemotherapeutics. Despite the latter, H1563 exhibited LD formation and resistance to etoposide, but not to cisplatin. Although H1299 cells preserved LDs, these cells were similarly sensitive to both drugs. In a cohort of 292 patients with non-small-cell lung cancer, a lower SREBF1 expression in tumors than in adjacent nontumor tissue correlated with overall better survival, specifically in patients with adenocarcinoma at stage I. Our findings imply that a direct correlation between SREBF1 and LD accumulation can be lost due to the changes in cancer cell environment and/or chemotherapy. The role of LDs in lung cancer development and response to therapies remains to be examined in more detail.

7.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012761

RESUMEN

Pathogenic hemizygous or heterozygous mutations in the IQSEC2 gene cause X-linked intellectual developmental disorder-1 (XLID1), characterized by a variable phenotype including developmental delay, intellectual disability, epilepsy, hypotonia, autism, microcephaly and stereotypies. It affects both males and females typically through loss of function in males and haploinsufficiency in heterozygous females. Females are generally less affected than males. Two novel unrelated cases, one male and one female, with de novo IQSEC2 variants were detected by trio-based whole exome sequencing. The female case had a previously undescribed frameshift mutation (NM_001111125:c.3300dup; p.Met1101Tyrfs*5), and the male showed an intronic variant in intron 6, with a previously unknown effect (NM_001111125:c.2459+21C>T). IQSEC2 gene expression study revealed that this intronic variant created an alternative donor splicing site and an aberrant product, with the inclusion of 19bp, confirming the pathogenic effect of the intron variant. Moreover, a strong reduction in the expression of the long, but also the short IQSEC2 isoforms, was detected in the male correlating with a more severe phenotype, while the female case showed no decreased expression of the short isoform, and milder effects of the disease. This suggests that the abnormal expression levels of the different IQSEC2 transcripts could be implicated in the severity of disease manifestations.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Isoformas de Proteínas/genética , Secuenciación del Exoma
8.
J Infect ; 85(4): 412-417, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35830908

RESUMEN

BACKGROUND: Monkeypox is the most prevalent Orthopoxvirus zoonosis infection since the eradication of smallpox. The current multi-country outbreak involves five WHO regions affecting mainly Europe. Accurate clinical and virological aspects of the disease outside endemic areas are needed. METHODS: We performed an observational study of cases diagnosed in Madrid (Spain) (May/June 2022). Confirmation from vesicular lesions swabs, Orthopoxvirus real-time PCR, sequencing, phylogenetic analysis, and direct detection by Electron microscopy was performed. In addition, a structured epidemiological questionnaire was completed systematically to gather sociodemographic, clinical, and behavioral data from all confirmed cases. FINDINGS: We extracted data from 48 patients, all cisgender men. The median age was 35 years (IQR 29 - 44), and 87.5% were MSM. The most prevalent symptoms were the presence of vesicular-umbilicated and pseudo-pustular skin lesions (93.8%), asthenia (66.6%), and fever (52.1%). In addition, the location of the lesions in the genital or perianal area was related to the role in sexual intercourse (p<0.001). Sequencing analysis indicated the virus circulating in Spain belongs to the western African clade. Like the other European cases in the outbreak, the Spanish isolates are a direct descendant of viruses previously detected in Nigeria, the UK, Singapore, and Israel in 2017-2018. CONCLUSIONS: Monkeypox is an emerging infectious disease in Europe where community transmission is reported, mainly in MSM. The first symptom was skin lesions instead of classical fever and rash. The disease follows a self-limited course, and there have been no cases with a serious presentation or severe complications.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Adulto , Animales , Brotes de Enfermedades , Fiebre/epidemiología , Homosexualidad Masculina , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Filogenia , España/epidemiología
9.
Front Microbiol ; 13: 826883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308337

RESUMEN

We documented a hematologic patient with prolonged SARS-CoV-2 viral replication in whom emergence of viral mutations was documented after the consecutive use of antivirals and convalescent plasma. The virus detected in the last of 12 clinical samples (day 237) had accumulated 22 changes in amino acids and 29 in nucleotides. Some of these changes, such as the E484Q, were mutations of concern as defined by WHO. This finding represents an enormous epidemiological threat and poses a major clinical challenge. Combined antiviral strategies, as well as specific strategies related to the diagnostic approach of prolonged infections for this specific population, may be needed.

10.
Virulence ; 12(1): 1400-1417, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34180774

RESUMEN

Candida auris has emerged as a fungal pathogen that causes nosocomial outbreaks worldwide. Diseases caused by this fungus are of concern, due to its reduced susceptibility to several antifungals. C. auris exhibits paradoxical growth (PG; defined as growth at high, but not intermediate antifungal concentrations) in the presence of caspofungin (CPF). We have characterized the cellular changes associated with adaptation to CPF. Using EUCAST AFST protocols, all C. auris isolates tested showed PG to CPF, although in some isolates it was more prominent. Most isolates also showed a trailing effect (TE) to micafungin and anidulafungin. We identified two FKS genes in C. auris that encode the echinocandins target, namely ß-1,3-glucan synthase. FKS1 contained the consensus hot-spot (HS) 1 and HS2 sequences. FKS2 only contained the HS1 region which had a change (F635Y), that has been shown to confer resistance to echinocandins in C. glabrata. PG has been characterized in other species, mainly C. albicans, where high CPF concentrations induced an increase in chitin, cell volume and aggregation. In C. auris CPF only induced a slight accumulation of chitin, and none of the other phenomena. RNAseq experiments demonstrated that CPF induced the expression of genes encoding several GPI-anchored cell wall proteins, membrane proteins required for the stability of the cell wall, chitin synthase and mitogen-activated protein kinases (MAPKs) involved in cell integrity, such as BCK2, HOG1 and MKC1 (SLT2). Our work highlights some of the processes induced in C. auris to adapt to echinocandins.


Asunto(s)
Candida auris , Caspofungina/farmacología , Pared Celular/efectos de los fármacos , Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Candida auris/genética , Pared Celular/química , Quitina , Pruebas de Sensibilidad Microbiana
11.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33127745

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome analysis has identified five large clades worldwide which emerged in 2019 (19A and 19B) and in 2020 (20A, 20B, and 20C). This study aimed to analyze the diffusion of SARS-CoV-2 in Spain using maximum-likelihood phylogenetic and Bayesian phylodynamic analyses. The most recent common ancestor (MRCA) of the SARS-CoV-2 pandemic was estimated to have emerged in Wuhan, China, around 24 November 2019. Phylogenetic analyses of the first 12,511 SARS-CoV-2 whole-genome sequences obtained worldwide, including 290 from 11 different regions of Spain, revealed 62 independent introductions of the virus in the country. Most sequences from Spain were distributed in clades characterized by a D614G substitution in the S gene (20A, 20B, and 20C) and an L84S substitution in ORF8 (19B) with 163 and 118 sequences, respectively, with the remaining sequences branching in 19A. A total of 110 (38%) sequences from Spain grouped in four different monophyletic clusters of clade 20A (20A-Sp1 and 20A-Sp2) and 19B clade (19B-Sp1 and 19B-Sp2) along with sequences from 29 countries worldwide. The MRCAs of clusters 19A-Sp1, 20A-Sp1, 19A-Sp2, and 20A-Sp2 were estimated to have occurred in Spain around 21 and 29 January and 6 and 17 February 2020, respectively. The prevalence of clade 19B in Spain (40%) was by far higher than in any other European country during the first weeks of the epidemic, probably as a result of a founder effect. However, this variant was replaced by G614-bearing viruses in April. In vitro assays showed an enhanced infectivity of pseudotyped virions displaying the G614 substitution compared with those having D614, suggesting a fitness advantage of D614G.IMPORTANCE Multiple SARS-CoV-2 introductions have been detected in Spain, and at least four resulted in the emergence of locally transmitted clusters that originated not later than mid-February, with further dissemination to many other countries around the world, and a few weeks before the explosion of COVID-19 cases detected in Spain during the first week of March. The majority of the earliest variants detected in Spain branched in the clade 19B (D614 viruses), which was the most prevalent clade during the first weeks of March, pointing to a founder effect. However, from mid-March to June 2020, G614-bearing viruses (clades 20A, 20B, and 20C) overcame D614 variants in Spain, probably as a consequence of an evolutionary advantage of this substitution in the spike protein. A higher infectivity of G614-bearing viruses than D614 variants was detected, suggesting that this substitution in SARS-CoV-2 spike protein could be behind the variant shift observed in Spain.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Efecto Fundador , SARS-CoV-2/genética , COVID-19/epidemiología , Aptitud Genética , Variación Genética , Genoma Viral/genética , Humanos , Filogenia , Filogeografía , Prevalencia , SARS-CoV-2/clasificación , España/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética
12.
J Clin Microbiol ; 59(3)2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33298610

RESUMEN

This study examines the microbiological and epidemiological characteristics of toxigenic and nontoxigenic Corynebacterium isolates submitted to the national reference laboratory in Spain, between 2014 and 2019, in order to describe the current situation and improve our knowledge regarding these emerging pathogens. Epidemiological information was extracted from the Spanish Surveillance System. Microbiological and molecular characterization was carried out using phenotypic methods, multilocus sequence typing (MLST), whole-genome sequencing (WGS), and core genome MLST (cgMLST). Thirty-nine isolates were analyzed. Twenty-one isolates were identified as Corynebacterium diphtheriae (6 toxigenic), 14 as C. belfantii, 4 as C. ulcerans (3 toxigenic), and 1 as C. rouxii One C. diphtheriae isolate was identified as nontoxigenic tox gene bearing (NTTB). Ages of patients ranged from 1 to 89 years, with 10% (3/30) of nontoxigenic and 22% (2/9) of toxigenic isolates collected from children less than 15 years. Twenty-five of the patients were males (17/30 in nontoxigenic; 8/9 in toxigenic). MLST identified 28 sequence types (STs), of which 7 were described for the first time in Spain. WGS analysis showed that 10 isolates, including 3 toxigenic isolates, harbored a variety of antibiotic resistance genes in addition to the high prevalence of penicillin resistance phenotypically demonstrated. Phylogenetic analysis revealed one cluster of isolates from family members. Risk information was available for toxigenic isolates (9/39); 3 patients reported recent travels to countries of endemicity and 3 had contact with cats/dogs. One unvaccinated child with respiratory diphtheria had a fatal outcome. Including nontoxigenic Corynebacterium infections in disease surveillance and using WGS could further improve current surveillance.


Asunto(s)
Corynebacterium diphtheriae , Difteria , Animales , Gatos , Corynebacterium/genética , Corynebacterium diphtheriae/genética , Difteria/epidemiología , Toxina Diftérica , Perros , Humanos , Tipificación de Secuencias Multilocus , Filogenia , España/epidemiología
13.
Fungal Biol ; 124(11): 915-923, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33059843

RESUMEN

Secretome represents a main target for understanding the mechanisms of fungal adaptation. In the present study, we focus on the secretomes of fungi associated with infections in humans and other mammals in order to explore relationships between the diverse morphological and phylogenetic groups. Almost all the mammalian pathogenic fungi analyzed have secretome sizes smaller than 1000 proteins and, secreted proteins comprise between 5% and 10% of the total proteome. As expected, the correlation pattern between the secretome size and the total proteome was similar to that described in previous secretome studies of fungi. With regard to the morphological groups, minimum secretome sizes of less than 250 secreted proteins and low values for the fraction of secreted proteins are shown in mammalian pathogenic fungi with reduced proteomes such as microsporidia, atypical fungi and some species of yeasts and yeast-like fungi (Malassezia). On the other hand, filamentous fungi have significantly more secreted proteins and the highest numbers are present in species of filamentous fungi that also are plant or insect pathogens (Fusarium verticilloides, Fusarium oxysporum and Basidiobolus meristosporus). With respect to phylogeny, there are also variations in secretome size across fungal subphyla: Microsporidia, Taphrinomycotina, Ustilagomycotina and Saccharomycotina contain small secretomes; whereas larger secretomes are found in Agaricomycotina, Pezizomycotina, Mucoromycotina and Entomophthoromycotina. Finally, principal component analysis (PCA) was conducted on the complete secretomes. The PCA results revealed that, in general, secretomes of fungi belonging to the same morphological group or subphyla cluster together. In conclusion, our results point out that in medically important fungi there is a relationship between the secretome and the morphological group or phylogenetic classification.


Asunto(s)
Biodiversidad , Hongos , Filogenia , Proteoma , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...