Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17662, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39085276

RESUMEN

This study focused on strategically employing the carboxylesterase enzyme Ha006a, derived from the pesticide-resistant microorganism Helicoverpa armigera, to detect atrazine. A comprehensive analysis through biochemical, biophysical and bioinformatics approaches was conducted to determine the interaction between the Ha006a protein and the herbicide atrazine. These experimental findings elucidated the potential of leveraging the inherent pesticide sequestration mechanism of the Ha006a enzyme for sensor fabrication. Numerous optimizations were undertaken to ensure the precision, reproducibility and convenient storage of the resulting electrochemical sensor, Ha006a/MCPE. This biosensor exhibited exceptional performance in detecting atrazine, demonstrating outstanding selectivity with a lower limit of detection of 5.4 µM. The developed biosensor has emerged as a reliable and cost-effective green tool for the detection of atrazine from diverse environmental samples. The Ha006a-based biosensor fabrication has expanded the possibilities for the efficient integration of insect enzymes as analytical tools, paving the way for the design of cost-effective biosensors capable of detecting and quantifying pesticides.


Asunto(s)
Atrazina , Técnicas Biosensibles , Técnicas Electroquímicas , Simulación del Acoplamiento Molecular , Atrazina/análisis , Atrazina/metabolismo , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Animales , Herbicidas/análisis , Carboxilesterasa/metabolismo , Reproducibilidad de los Resultados
2.
Sci Rep ; 13(1): 19995, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968362

RESUMEN

Urea is recognized as one of the most frequently used adulterants in milk to enhance artificial protein content, and whiteness. Drinking milk having high urea concentrations which causes innumerable health disputes like ulcers, indigestion, and kidney-related problems. Therefore, herein, a simple and rapid electroanalytical platform was developed to detect the presence of urea in milk using a modified electrode sensor. Calcium oxide nanoparticles (CaO NPs) were green synthesized and used as a catalyst material for developing the sensor. Synthesized materials formation was confirmed by different techniques like FTIR, UV-visible, XRD, SEM-EDX, and Raman spectroscopy. The carbon paste electrode (CPE) was modified using the CaO NPs and used as a working electrode during the analysis followed by cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The fabricated calcium oxide modified carbon paste electrode (CaO/CPE) successfully detected the presence of urea in the lower concentration range (lower limit of detection (LLOD) = 0.032 µM) having a wide linear detection range of 10-150 µM. Adsorption-controlled electrode process was achieved at the scan rate variation parameter. The leading parameters like the selectivity, repeatability, and stability of the CaO/CPE were investigated. The relative standard deviation of sensor was ± 3.8% during the interference and stability study.

3.
Chemosphere ; 345: 140465, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866494

RESUMEN

The present investigation reports a comprehensible and responsive strategy for identifying atrazine in several conditions using an extensive electrochemical method. CdS Quantum dots were synthesized via a greener approach, and their formation was endorsed by numerous characterization techniques such as FTIR, SEM, Raman, UV-Vis, and XRD. Owing to the splendid electrocatalytic behavior, Green CdS quantum dots (QDs) of crystallite size ∼2 nm was opted as the sensor material and were, therefore, incorporated on the bare carbon paste electrode's surface. The developed sensor demonstrated an impressive outcome for atrazine sensing accompanied by superior selectivity and sensitivity. The lower detection limit (LLOD) of 0.53 µM was attained using the developed sensor in a linear concentration range of 10-100 µM. Furthermore, the practical pertinence of the developed sensor was examined on distilled water, wastewater, and fresh liquid milk, resulting in a tremendous retrieval of atrazine (91.33-99.8%).


Asunto(s)
Atrazina , Agua Potable , Puntos Cuánticos , Puntos Cuánticos/química , Atrazina/análisis , Técnicas Electroquímicas , Carbono/química
4.
Chemosphere ; 344: 140264, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758081

RESUMEN

Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Aguas Residuales
5.
Chemosphere ; 333: 138977, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37209853

RESUMEN

Zirconium-based metal-organic frameworks (MOF) exhibiting 3D rhombohedral microcrystals were synthesized by the solvothermal method. The structure, morphology, composition, and optical properties of the synthesized MOF were carried out using different spectroscopic, microscopic, and diffraction techniques. Synthesized MOF was rhombohedral in shape and the cage structure of these crystalline molecules was the active binding site of the analyte, tetracycline (TET). The electronic property and size of the cages are chosen such that a specific interaction with TET was observed. Sensing of the analyte was demonstrated by both the electrochemical and fluorescent techniques. The MOF had significant luminescent properties and exhibited excellent electro-catalytic activity due to embedded zirconium metal ions. An electrochemical and fluorescence sensor was fabricated towards TET where TET binds via hydrogen bond to MOF, and causes fluorescence quenching due to the transfer of electrons. Both approaches exhibited high selectivity and good stability in the presence of interfering molecules such as antibiotics, biomolecules, and ions; and showed excellent reliability in tap water and wastewater sample analysis.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Circonio , Reproducibilidad de los Resultados , Antibacterianos/análisis , Tetraciclina , Iones
6.
Chemosphere ; 311(Pt 2): 137104, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36347345

RESUMEN

In the present study, a simple and sensitive method for detecting bisphenol A (BPA) in various environments, including groundwater, was described using a widespread electrochemical method. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects oon the nervous, reproductive, and immune systems. A novel metal-organic framework (UiO-66-NDC/GO) was synthesized, and its existence was confirmed by several characterization techniques like FTIR, UV-visible, XRD, SEM-EDX, Raman spectroscopy, and TGA. Due to the excellent electrocatalytic nature, UiO-66-NDC/GO was chosen as the sensor material and integrated on the surface of the bare carbon paste electrode (BCPE). The UiO-66-NDC/GO modified carbon paste electrode (MCPE) was engaged for the detection of BPA using techniques like cyclic Voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The applied sensor exhibited an astonishing outcome for BPA detection with high sensitivity and selectivity. The lower detection limit (LLOD) of 0.025 µM was achieved at the modified sensor with a linear concentration range of 10-70 µM. Moreover, the practical applicability of the sensor was tested on tap water, drinking water, and fresh liquid milk, giving an excellent recovery of BPA in the range of 94.8-99.3 (v.%). The proposed method could be employed for electrochemical device or a solid state device fabrication for the onsite monitoring of BPA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA