Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 602, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679456

RESUMEN

The evolution of bismuth crystal structure upon excitation of its A1g phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal at high intensities (~1014 W/cm2). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300 fs, i.e. faster than one oscillation period of the A1g mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to plasma formation.

2.
Opt Lett ; 42(24): 5137-5140, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29240156

RESUMEN

We experimentally demonstrate critical coupling of whispering gallery mode (WGM) disk resonators implemented on a Bloch surface wave platform using scanning near-field optical microscopy. The studied structure is a 60 nm thick TiO2 WGM disk cavity (radius of 100 µm) operating within the C-band telecommunication wavelength. An extinction ratio of 26 dB and a quality factor of 2200 are measured. Such a high extinction ratio verifies the critical coupling of the WGM resonator. This result paves the way to planar optical signal processing devices based on the proposed geometry, for which a critical coupling condition is a guarantee of optimum performance.

3.
Sci Rep ; 5: 10451, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26022615

RESUMEN

At low emittance synchrotron sources it has become possible to perform structure determinations from the measurement of multiple microcrystals which were previously considered too small for diffraction experiments. Conventional mounting techniques do not fulfill the requirements of these new experiments. They significantly contribute to background scattering and it is difficult to locate the crystals, making them incompatible with automated serial crystallography. We have developed a micro-fabricated sample holder from single crystalline silicon with micropores, which carries up to thousands of crystals and significantly reduces the background scattering level. For loading, the suspended microcrystals are pipetted onto the chip and excess mother liquor is subsequently soaked off through the micropores. Crystals larger than the pore size are retained and arrange themselves according to the micropore pattern. Using our chip we were able to collect 1.5 Å high resolution diffraction data from protein microcrystals with sizes of 4 micrometers and smaller.

4.
Sci Rep ; 5: 7644, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25561027

RESUMEN

X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide a time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.

5.
J Synchrotron Radiat ; 20(Pt 5): 667-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955029

RESUMEN

The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs.

6.
Appl Opt ; 50(16): 2451-7, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21629326

RESUMEN

A subwavelength concentric ring metal grating for visible light (λ=632.8 nm) is designed and fabricated by electron-beam lithography to transform circularly polarized light into radially polarized light. Experimental results are compared to theoretical predictions and the advantages and disadvantages of the element with alternative methods are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...