Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(19): 13016, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655489

RESUMEN

Expression of concern for 'Facile route to synthesize Fe3O4@acacia-SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications' by Reza Taheri-Ledari et al., RSC Adv., 2020, 10, 40055-40067, https://doi.org/10.1039/D0RA07986C.

2.
Mater Sci Eng C Mater Biol Appl ; 109: 110502, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228990

RESUMEN

Dextrin is a low molecular weight polysaccharide obtained from natural resources. Due to exceptional properties such as chemical structure, having extreme reactive functional groups, low cost, commercial availability, non-toxicity and biocompatibility, it can be introduced as a green organocatalyst. The fabrication of hybrid materials from natural polymers and synthetic inorganic materials constructs compounds with new features, abilities and applications. Therefore, magnetic dextrin nanobiocomposite was prepared using a simple chemical co-precipitation. Then, it was characterized by Fourier transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) analysis, vibrating sample magnetometer (VSM) curve, scanning electron microscopy (SEM) image, X-ray diffraction (XRD) pattern, thermogravimetric analysis (TGA) and inductively-coupled plasma atomic emission spectroscopy (ICP-AES) analysis. Subsequently, to evaluate the catalytic performance of the synthetic hybrid catalyst, it was tested for the synthesis of biologically active polyhydroquinoline derivatives by four-component condensation reactions of aromatic aldehyde, ethyl acetoacetate, dimedone, ammonium acetate in ethanol under refluxing conditions. Experimental observations indicated some advantages of the present method, such as the use of green and biopolymer-based catalyst, simple procedure, mild reaction conditions, short reaction times (15-45 min), appropriate yield of products (70-95%) and catalyst reusability after five consecutive runs without considerable catalytic performance decrease.


Asunto(s)
Materiales Biocompatibles/química , Nanocompuestos/química , Polisacáridos/sangre , Acetatos/química , Acetoacetatos/química , Ciclohexanonas/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
RSC Adv ; 10(66): 40055-40067, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35520839

RESUMEN

In this work, a novel catalytic system for facilitating the organic multicomponent synthesis of 9-phenyl hexahydroacridine pharmaceutical derivatives is reported. Concisely, this catalyst was constructed from acacia gum (gum arabic) as a natural polymeric base, iron oxide magnetic nanoparticles (Fe3O4 NPs), and sulfone functional groups on the surface as the main active catalytic sites. Herein, a convenient preparation method for this nanoscale composite is introduced. Then, essential characterization methods such as various spectroscopic analyses and electron microscopy (EM) were performed on the fabricated nano-powder. The thermal stability and magnetic properties were also precisely monitored via thermogravimetric analysis (TGA) and vibrating-sample magnetometry (VSM) methods. Then, the performance of the presented catalytic system (Fe3O4@acacia-SO3H) was further investigated in the referred organic reaction by using various derivatives of the components involved in the reaction. Optimization, mechanistic studies, and reusability screening were carried out for this efficient catalyst as well. Overall, remarkable reaction yields (94%) were obtained for the various produced derivatives of 9-phenyl hexahydroacridine in the indicated optimal conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...