Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 9(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35621481

RESUMEN

The control of cell behaviour in an effort to create highly homogeneous cultures is becoming an area of intense research, both to elucidate fundamental biology and for regenerative applications. The extracellular matrix (ECM) controls many cellular processes in vivo, and as such is a rich source of cues that may be translated in vitro. Herein, we describe the creation of cell culture coatings from porcine decellularised hyaline cartilage through enzymatic digestion. Surprisingly, heat-mediated sterilisation created a coating with the capacity to rapidly and robustly induce chondrogenic differentiation of human periosteal cells. This differentiation was validated through the alteration of cell phenotype from a fibroblastic to a cuboidal/cobblestone chondrocyte-like appearance. Moreover, chondrogenic gene expression further supported this observation, where cells cultured on heat sterilised ECM-coated plastic displayed higher expression of COL2A1, ACAN and PRG4 (p < 0.05) compared to non-coated plastic cultures. Interestingly, COL2A1 and ACAN expression in this context were sensitive to initial cell density; however, SOX9 expression appeared to be mainly driven by the coating independent of seeding density. The creation of a highly chondrogenic coating may provide a cost-effective solution for the differentiation and/or expansion of human chondrocytes aimed towards cartilage repair strategies.

2.
Tissue Eng Part A ; 24(17-18): 1364-1376, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29580181

RESUMEN

Complications that arise from impaired fracture healing have considerable socioeconomic implications. Current research in the field of bone tissue engineering predominantly aims to mimic the mature bone tissue microenvironment. This approach, however, may produce implants that are intrinsically unresponsive to the cues present during the initiation of fracture repair. As such, this study describes the development of decellularized xenogeneic hyaline cartilage matrix in an attempt to mimic the initial reparative phase of fracture repair. Three approaches based on vacuum-assisted osmotic shock (Vac-OS), Triton X-100 (Vac-STx), and sodium dodecyl sulfate (Vac-SDS) were investigated. The Vac-OS methodology reduced DNA content below 50 ng/mg of tissue, while retaining 85% of the sulfate glycosaminoglycan content, and as such was selected as the optimal methodology for decellularization. The resultant Vac-OS scaffolds (decellularized extracellular matrix [dcECM]) were also devoid of the immunogenic alpha-Gal epitope. Furthermore, minimal disruption to the structural integrity of the dcECM was demonstrated using differential scanning calorimetry and fluorescence lifetime imaging microscopy. The biological integrity of the dcECM was confirmed by its ability to drive the chondrogenic commitment and differentiation of human chondrocytes and periosteum-derived cells, respectively. Furthermore, histological examination of dcECM constructs implanted in immunocompetent mice revealed a predominantly M2 macrophage-driven regenerative response both at 2 and 8 weeks postimplantation. These findings contrasted with the implanted native costal cartilage that elicited a predominantly M1 macrophage-mediated inflammatory response. This study highlights the capacity of dcECM from the Vac-OS methodology to direct the key biological processes of endochondral ossification, thus potentially recapitulating the callus phase of fracture repair.


Asunto(s)
Callo Óseo/metabolismo , Cartílago/química , Condrocitos/metabolismo , Condrogénesis , Matriz Extracelular/química , Animales , Callo Óseo/citología , Técnicas de Cultivo de Célula , Condrocitos/citología , Humanos , Porcinos
3.
J Tissue Eng ; 8: 2041731417704791, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28491274

RESUMEN

Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...