Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(27): 39588-39601, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822961

RESUMEN

This work presents the first comprehensive assessment of PM pollution sources in Dushanbe, Tajikistan. A total of 138 PM2.5 samples were collected during 2015-2016 and 2018-2019 and were analyzed through gravimetric, ED-XRF, and multi-wavelength absorption techniques. The results show that PM2.5 concentrations were substantially higher than the European annual limit value and WHO Air Quality Guidelines annual average value, with an average of 90.9 ± 68.5 µg m-3. The PMF application identified eight sources of pollution that influenced PM2.5 concentration levels in the area. Coal burning (21.3%) and biomass burning (22.3%) were the dominant sources during the winter, while vehicular traffic (7.7%) contributed more during the warm season. Power plant emissions (17.5%) showed enhanced contributions during the warm months, likely due to high energy demand. Cement industry emissions (6.9%) exhibited significant contribution during the cold period of 2018-2019, while soil dust (11.3%) and secondary sulphates (11.5%) displayed increased contribution during the warm and cold months, respectively. Finally, waste burning (1.5%) displayed the lowest contribution, with no significant temporal variation. Our results highlight the significant impact of anthropogenic activities, and especially the use of coal burning for energy production (both in power plants and for residential heating), and the significant contribution of biomass burning during both warm and cold seasons.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Tayikistán , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Ciudades , Estaciones del Año , Emisiones de Vehículos/análisis
3.
Sci Rep ; 11(1): 14477, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262082

RESUMEN

Air quality in urban areas and megacities is dependent on emissions, physicochemical process and atmospheric conditions in a complex manner. The impact on air quality metrics of the COVID-19 lockdown measures was evaluated during two periods in Athens, Greece. The first period involved stoppage of educational and recreational activities and the second severe restrictions to all but necessary transport and workplace activities. Fresh traffic emissions and their aerosol products in terms of ultrafine nuclei particles and nitrates showed the most significant reduction especially during the 2nd period (40-50%). Carbonaceous aerosol both from fossil fuel emissions and biomass burning, as well as aging ultrafine and accumulation mode particles showed an increase of 10-20% of average before showing a decline (5 to 30%). It is found that removal of small nuclei and Aitken modes increased growth rates and migration of condensable species to larger particles maintaining aerosol volume.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire/análisis , Nitratos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , COVID-19 , Ambiente , Monitoreo del Ambiente , Grecia , Humanos , SARS-CoV-2 , Factores de Tiempo
4.
Sci Total Environ ; 653: 1407-1416, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759579

RESUMEN

The main objective of this study was chemical characterization and source apportionment of the oxidative potential of ambient PM2.5 samples collected in an urban background area in Athens, Greece. Ambient PM2.5 samples were collected during the summer (June-September) of 2017 and winter (February-March) of 2018 at a residential, urban background site in the outlying neighborhood of the Demokritos National Laboratory in Athens, Greece. The collected PM samples were analyzed for their chemical constituents including metals and trace elements, water-soluble organic carbon (WSOC), elemental and organic carbon (EC/OC), and marker of biomass burning (i.e., levoglucosan). In addition, the DCFH in vitro assay was performed to determine the oxidative potential of the PM2.5 samples. We performed a series of statistical analyses, including Spearman rank-order correlation analysis, principal component analysis (PCA), and multi linear regression (MLR) to determine the most significant species (as source tracers) contributing to the oxidative potential of PM2.5. Our findings revealed that the intrinsic (per PM mass) and extrinsic (per m3 of air volume) oxidative potentials of the collected ambient PM2.5 samples were significantly higher than those measured in many urban areas around the world. The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM2.5 were vehicular emissions (characterized by EC) (44%), followed by secondary organic aerosol (SOA) formation (characterized by WSOC) (16%), and biomass burning (characterized by levoglucosan) (9%). The oxidative potential of the collected ambient PM2.5 samples was also higher in summer compared to the winter, mainly due to higher concentrations of EC and WSOC during this season. Results from this study corroborate the impact of traffic and SOA on the oxidative potential of ambient PM2.5 in greater Athens area, and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM2.5.

5.
Environ Sci Pollut Res Int ; 24(12): 11836-11846, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28343359

RESUMEN

The aim of this work is to study the atmospheric concentrations of selected major and trace elements and ions found in PM2.5, at a suburban site in Athens, Greece, and discuss on the impact of the different sources. Special focus is given to the influence of Saharan dust episodes. The seasonal variability in the metal and ion concentrations is also examined. The results show that PM2.5 mass concentrations are significantly influenced by Saharan dust events; it is observed that when the PM2.5 concentration is higher than 25 µg/m3, five out of six times, the air mass crossed North Africa at an altitude within the boundary layer. Fe is found to be the element with the more significant seasonal variability, displaying much higher concentrations during cold period. The frequent Saharan dust intrusions in the cold period of this dataset may explain this result. Mineral dust and secondary aerosol are the main PM2.5 components (29 and 34%, respectively). During Saharan dust events, the concentration of mineral dust is increased by 35% compared to the days without dust intrusions, while an increase of 68% of the sea salt is also observed. During event days, PM2.5 concentrations are also increased by 14%. Anthropogenic components do not decrease during those days, while sulfate displays even a slight increase, suggesting enrichment of mineral dust with secondary sulfates. The results indicate that African dust intrusions add a rather significant PM pollution load even in the PM2.5 fraction, with implication to population exposure and human health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Polvo , Monitoreo del Ambiente , África del Norte , Grecia , Humanos , Tamaño de la Partícula , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...