Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894708

RESUMEN

This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer-Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.


Asunto(s)
Liposomas , Rotenona , Rotenona/farmacología , Mitocondrias , Línea Celular , Fosfatidilcolinas , Tensoactivos
2.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569687

RESUMEN

A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N'-dialkyl-N,N'-bis(2-(ethylcarbamoyloxy)ethyl)-N,N'-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were obtained using tensiometry, conductometry, spectrophotometry, and fluorimetry. The thermodynamic parameters of adsorption and micellization, i.e., maximum surface excess (Гmax), the surface area per surfactant molecule (Amin), degree of counterion binding (ß), and Gibbs free energy of micellization (∆Gmic), were calculated. Functional activity of the surfactants, including the solubilizing capacity toward Orange OT and indomethacin, incorporation into the lipid bilayer, minimum inhibitory concentration, and minimum bactericidal and fungicidal concentrations, was determined. Synthesized gemini surfactants were further used for the modification of liposomes dual-loaded with α-tocopherol and donepezil hydrochloride for intranasal treatment of Alzheimer's disease. The obtained liposomes have high stability (more than 5 months), a significant positive charge (approximately + 40 mV), and a high degree of encapsulation efficiency toward rhodamine B, α-tocopherol, and donepezil hydrochloride. Korsmeyer-Peppas, Higuchi, and first-order kinetic models were used to process the in vitro release curves of donepezil hydrochloride. Intranasal administration of liposomes loaded with α-tocopherol and donepezil hydrochloride for 21 days prevented memory impairment and decreased the number of Aß plaques by 37.6%, 40.5%, and 72.6% in the entorhinal cortex, DG, and CA1 areas of the hippocampus of the brain of transgenic mice with Alzheimer's disease model (APP/PS1) compared with untreated animals.

3.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445673

RESUMEN

Liposomes modified with tetradecyltriphenylphosphonium bromide with dual loading of α-tocopherol and donepezil hydrochloride were successfully designed for intranasal administration. Physicochemical characteristics of cationic liposomes such as the hydrodynamic diameter, zeta potential, and polydispersity index were within the range from 105 to 115 nm, from +10 to +23 mV, and from 0.1 to 0.2, respectively. In vitro release curves of donepezil hydrochloride were analyzed using the Korsmeyer-Peppas, Higuchi, First-Order, and Zero-Order kinetic models. Nanocontainers modified with cationic surfactant statistically better penetrate into the mitochondria of rat motoneurons. Imaging of rat brain slices revealed the penetration of nanocarriers into the brain. Experiments on transgenic mice with an Alzheimer's disease model (APP/PS1) demonstrated that the intranasal administration of liposomes within 21 days resulted in enhanced learning abilities and a reduction in the formation rate of Aß plaques in the entorhinal cortex and hippocampus of the brain.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Liposomas/metabolismo , Donepezilo , Encéfalo/metabolismo , Ratones Transgénicos , Mitocondrias , Modelos Animales de Enfermedad
4.
Curr Med Chem ; 30(33): 3743-3774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36380443

RESUMEN

This review covers nanotherapeutic strategies for solving the global problems associated with Alzheimer's disease (AD). The most dramatic factor contributing humanistic, social and economic urgency of the situation is the incurability of the disease, with the drug intervention addressing only AD symptoms and retarding their progress. Key sources behind these challenges are the inability of the early diagnosis of AD, the lack of comprehensive information on the molecular mechanism of the pathogenesis, the bloodbrain barrier obstacles, and the insufficient effectiveness of currently available drugs and therapeutic strategies. The application of nanocarriers allows part of these problems to be solved, together with the improvement of drug bioavailability, prolonged circulation, and overcoming/bypassing the biological barriers. To this date, numerous types and subtypes of nanocarriers are developed and reviewed, the majority of which can be adapted for the treatment of various diseases. Therefore, herein, nanotherapy strategies are specifically categorized in term of the administration routes of AD medicines, with the noninvasive, i.e., transdermal, oral, and intranasal routes emphasized. Further, benefits/ limitations of various nanocarriers are discussed, and perspectives of their application are highlighted.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/uso terapéutico , Barrera Hematoencefálica
5.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559178

RESUMEN

Interaction between cationic surfactants and nucleic acids attracts much attention due to the possibility of using such systems for gene delivery. Herein, the lipoplexes based on cationic surfactants with imidazolium head group bearing methoxyphenyl fragment (MPI-n, n = 10, 12, 14, 16) and nucleic acids (oligonucleotide and plasmid DNA) were explored. The complex formation was confirmed by dynamic/electrophoretic light scattering, transmission electron microscopy, fluorescence spectroscopy, circular dichroism, and gel electrophoresis. The nanosized lipoplex formation (of about 100-200 nm), contributed by electrostatic, hydrophobic interactions, and intercalation mechanism, has been shown. Significant effects of the hydrocarbon tail length of surfactant and the type of nucleic acid on their interaction was revealed. The cytotoxic effect and transfection ability of lipoplexes studied were determined using M-HeLa, A549 cancer cell lines, and normal Chang liver cells. A selective reduced cytotoxic effect of the complexes on M-HeLa cancer cells was established, as well as a high ability of the systems to be transfected into cancer cells. MPI-n/DNA complexes showed a pronounced transfection activity equal to the commercial preparation Lipofectamine 3000. Thus, it has been shown that MPI-n surfactants are effective agents for nucleic acid condensation and can be considered as potential non-viral vectors for gene delivery.

6.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499322

RESUMEN

For the first time, the efficacy of post-exposure treatment of organophosphate (OP) poisoning was increased by transdermal delivery of acetylcholinesterase (AChE) reactivator pyridine-2-aldoxime methochloride (2-PAM) as a preventive countermeasure. By selecting the optimal ratio of components, classical transfersomes (based on soybean phosphatidylcholine and Tween 20) and modified transfersomes (based on soybean phosphatidylcholine, Tween 20 and pyrrolidinium cationic surfactants with different hydrocarbon tail lengths) were obtained for 2-PAM encapsulation. Transfersomes modified with tetradecylpyrrolidinium bromide showed the best results in encapsulation efficiency and sustained release of 2-PAM from vesicles. Using Franz cells, it was found that the incorporation of surfactants into PC liposomes results in a more prolonged release of 2-PAM through the rat skin. Transfersomes containing 2-PAM, after exhaustive physical and chemical characterization, were embedded in a gel based on Carbopol® 940. A significantly high degree of erythrocyte AChE reactivation (23 ± 7%) was shown for 2-PAM in unmodified transfersomes in vivo. Preliminary transdermal administration of 2-PAM 24 h before emergency post-exposure treatment of OP poisoning leads to an increase in the survival rate of rats from 55% to 90%.


Asunto(s)
Intoxicación por Organofosfatos , Animales , Ratas , Administración Cutánea , Intoxicación por Organofosfatos/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Antídotos , Tensoactivos/uso terapéutico , Fosfatidilcolinas/uso terapéutico
7.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833877

RESUMEN

This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Animales , Disponibilidad Biológica , Composición de Medicamentos , Humanos , Lípidos/química , Liposomas/química , Sistema de Administración de Fármacos con Nanopartículas/síntesis química , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Nanopartículas/química , Permeabilidad , Solubilidad , Tensoactivos/química
8.
Int J Pharm ; 604: 120776, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34098055

RESUMEN

Novel nanocomposite system based on mesoporous silica nanoparticles (MSNs) noncovalently modified with hexadecyltriphenylphosphonium bromide (HTPPB) has been prepared, thoroughly characterized and used for encapsulation of model cargo Rhodamine B (RhB). The high encapsulation efficacy of this dye by HTPPB-modified mesoporous particles was demonstrated by spectrophotometry and thermography techniques. The bioavailability of MSN@HTPPB was testified. Cytotoxicity assay revealed that a marked suppression of M-HeLa cancer cells (epithelioid carcinoma of the cervix) occurs at concentration of 0.06 µg/mL, while the higher viability of Chang liver normal cell line was preserved in the concentration range of 0.98-0.06 µg/mL. Hemolysis assay demonstrated that only 2% of red blood cells are destructed at ~ 30 µg/mL concentration. This allows us to select the most harmless compositions based on MSN@HTPPB with minimal side effects toward normal cells and recommend them for the development of antitumor formulations. Fluorescence microscopy technique testified satisfactory penetration of HTPPB-modified carriers into M-HeLa cells. Importantly, modification of the MSN with HTPPB is shown to promote efficient delivery to mitochondria. To the best of our knowledge, it is one of the first successful examples of noncovalent surface modification of the MSNs with lipophilic phosphonium cation that improves targeted delivery of loads to mitochondria.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Cationes , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Femenino , Células HeLa , Humanos , Mitocondrias , Porosidad
9.
Int J Pharm ; 605: 120803, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144135

RESUMEN

New liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl fragment (CnPB, n = 12, 14, 16) were prepared for transdermal delivery of non-steroidal anti-inflammatory drugs. In order to obtain the optimal composition, the surfactant/lipid molar ratio (0.02/1; 0.029/1; 0.04/1) and the amphiphile hydrocarbon tail length were varied. Rhodamine B was loaded in all formulations, while meloxicam and ketoprofen in selected ones. For liposomes studied the hydrodynamic diameter was in the range of 80-130 nm, the zeta potential ranged from +35 to +50 mV, EE was 75-99%. Liposome modification leads to a prolonged release of the rhodamine B (up to 10-12 h) and faster release of non-steroidal drugs (up to 7-8 h) in vitro. The ability to cross the skin barrier using Franz cells was investigated for liposomal meloxicam and ketoprofen. The total amount of meloxicam and ketoprofen passed through the Strat-M® membranes during 51 h was 51-114 µg/cm2 and 87-105 µg/cm2 respectively. The evaluation of transdermal diffusion ex vivo showed that total amount of liposomal ketoprofen passed through the skin during 51 h was 140-162 µg/cm2. Liposomes modified with C16PB were found as the most effective inflammation reducing formulation in the carrageenan edema model of rat paw.


Asunto(s)
Cetoprofeno , Liposomas , Administración Cutánea , Animales , Antiinflamatorios no Esteroideos , Meloxicam , Tamaño de la Partícula , Ratas , Piel
10.
Int J Pharm ; 587: 119640, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32673770

RESUMEN

Hydroxyethyl bearing gemini surfactants, alkanediyl-α,ω-bis(N-hexadecyl-N-2-hydroxyethyl-N-methylammonium bromide), 16-s-16(OH), were used to augment phosphatidylcholine based liposomes to achieve higher stability and enhanced cellular uptake and penetration. The developed liposomes were loaded with rhodamine B, doxorubicin hydrochloride, pralidoxime chloride to investigate release properties, cytotoxicity in vitro, as well as ability to cross the blood-brain barrier. At molar ratio of 35:1 (lipid:surfactant) the formulation was found to be of low toxicity, stable for two months, and able to deliver rhodamine B beyond the blood-brain barrier in rats. In vivo, pharmacokinetics of free and formulated 2-PAM in plasma and brain were evaluated, liposomal 2-PAM was found to reactivate 27% of brain acetylcholinesterase, which is, to our knowledge, the first example of such high degree of reactivation after intravenous administration of liposomal drug.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Animales , Cationes , Doxorrubicina , Ratas , Tensoactivos
11.
J Mater Chem B ; 7(46): 7351-7362, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31696196

RESUMEN

The purpose of this work was to obtain cationic liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine noncovalently modified using alkyltriphenylphosphonium bromides (TPPB-n) with different lengths of hydrocarbon tail for targeted delivery to mitochondria. The hydrodynamic diameter and electrokinetic potential of hybrid liposomes depending on the lipid/surfactant ratio were monitored in time with the aim to optimize the composition with sufficient stability and positive charge for mitochondria-targeted delivery. It was found that increasing the alkyl tail length of the surfactant (up to TPPB-14) leads to an increase in the positive charge of the liposomes. The most optimal results of stability were obtained for hybrid liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and TPPB-12, TPPB-14. The obtained modified liposomes were loaded with hydrophilic substrates (a model probe Rhodamine B and medicines metronidazole and doxorubicin). This is one of the first examples of fabrication of liposomes noncovalently modified using an amphiphilic TPP cation, with the alkyl tail length of surfactant and TPP/lipid ratio optimized in terms of stability of the liposomes and the binding/release behavior of hydrophilic probes. Using the confocal microscopy method, it was shown that modification of liposomes with a triphenylphosphonium cation results in targeted delivery of encapsulated compounds to mitochondria.


Asunto(s)
Bromuros/química , Cationes/química , Liposomas/química , Mitocondrias/metabolismo , Antineoplásicos/farmacología , Benzopiranos/química , Línea Celular Tumoral , Portadores de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Hemólisis , Humanos , Hidrodinámica , Lípidos/química , Hígado/efectos de los fármacos , Metronidazol/química , Microscopía Confocal , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Rodaminas/química , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...