Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 7(1): 136, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102334

RESUMEN

Despite the promising antitumor activity of SHP2 inhibitors in RAS-dependent tumours, overall responses have been limited by their narrow therapeutic window. Like with all MAPK pathway inhibitors, this is likely the result of compensatory pathway activation mechanisms. However, the underlying mechanisms of resistance to SHP2 inhibition remain unknown. The E3 ligase SMURF2 limits TGFß activity by ubiquitinating and targeting the TGFß receptor for proteosome degradation. Using a functional RNAi screen targeting all known phosphatases, we identify that the tyrosine phosphatase SHP2 is a critical regulator of TGFß activity. Specifically, SHP2 dephosphorylates two key residues on SMURF2, resulting in activation of the enzyme. Conversely, SHP2 depletion maintains SMURF2 in an inactive state, resulting in the maintenance of TGFß activity. Furthermore, we demonstrate that depleting SHP2 has significant implications on TGFß-mediated migration, senescence, and cell survival. These effects can be overcome through the use of TGFß-targeted therapies. Consequently, our findings provide a rationale for combining SHP2 and TGFß inhibitors to enhance tumour responses leading to improved patient outcomes.

2.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810522

RESUMEN

The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation of several signalling cascades which regulate biological processes such as cellular growth, survival, proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour progression and is one of the most common events in human cancers. Additionally, aberrant activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of anti-tumour agents paving the way for the development and implementation of PI3K inhibitors in the clinic. However, the overall effectiveness of these compounds has been greatly limited by inadequate target engagement due to reactivation of the pathway by compensatory mechanisms. Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway, therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore, we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.

3.
Sci Rep ; 10(1): 15725, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973272

RESUMEN

Systematic control of the transforming growth factor-ß (TGFß) pathway is essential to keep the amplitude and the intensity of downstream signalling at appropriate levels. Ubiquitination plays a crucial role in the general regulation of this pathway. Here we identify the deubiquitinating enzyme OTUD4 as a transcriptional target of the TGFß pathway that functions through a positive feedback loop to enhance overall TGFß activity. Interestingly we demonstrate that OTUD4 functions through both catalytically dependent and independent mechanisms to regulate TGFß activity. Specifically, we find that OTUD4 enhances TGFß signalling by promoting the membrane presence of TGFß receptor I. Furthermore, we demonstrate that OTUD4 inactivates the TGFß negative regulator SMURF2 suggesting that OTUD4 regulates multiple nodes of the TGFß pathway to enhance TGFß activity.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...