Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139098

RESUMEN

Fluorescence of the vast majority of natural opsin-based photoactive proteins is extremely low, in accordance with their functions that depend on efficient transduction of absorbed light energy. However, several recently proposed classes of engineered rhodopsins with enhanced fluorescence, along with the discovery of a new natural highly fluorescent rhodopsin, NeoR, opened a way to exploit these transmembrane proteins as fluorescent sensors and draw more attention to studies on this untypical rhodopsin property. Here, we review the available data on the fluorescence of the retinal chromophore in microbial and animal rhodopsins and their photocycle intermediates, as well as different isomers of the protonated retinal Schiff base in various solvents and the gas phase.


Asunto(s)
Retina , Rodopsina , Animales , Rodopsina/metabolismo , Fluorescencia , Retina/metabolismo
3.
J Mater Chem B ; 11(17): 3860-3870, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013677

RESUMEN

Transcutaneous immunization receives much attention due to the recognition of a complex network of immunoregulatory cells in various layers of the skin. The elaboration of non-invasive needle-free approaches towards antigen delivery holds especially great potential here while searching for a hygienically optimal vaccination strategy. Here, we report on a novel protocol for transfollicular immunization aiming at delivery of an inactivated influenza vaccine to perifollicular antigen presenting cells without disrupting the stratum corneum integrity. Porous calcium carbonate (vaterite) submicron carriers and sonophoresis were utilized for this purpose. Transportation of the vaccine-loaded particles into hair follicles of mice was assessed in vivo via optical coherence tomography monitoring. The effectiveness of the designed immunization protocol was further demonstrated in an animal model by means of micro-neutralization and enzyme-linked immunosorbent assays. The titers of secreted virus-specific IgGs were compared to those obtained in response to intramuscular immunization using conventional influenza vaccine formulation demonstrating no statistically significant differences in antibody levels between the groups. The findings of our pilot study render the intra-follicular delivery of the inactivated influenza vaccine by means of vaterite carriers a promising alternative to invasive immunization.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Proyectos Piloto , Administración Cutánea , Vacunación , Inmunización/métodos
4.
Acta Virol ; 67(1): 99-108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950890

RESUMEN

The major protective immune response against viruses is the production of type I and III interferons (IFNs). IFNs induce the expression of hundreds of IFN-stimulated genes (ISGs) that block viral replication and further viral spread. In this report, we analyzed the expression of IFNs and some ISGs (MxA, PKR, OAS-1, IFIT-1, RIG-1, MDA5, SOCS-1) in alveolar epithelial cells (A549) in response to infection with influenza A viruses (A/California/07/09 (H1N1pdm); A/Texas/50/12 (H3N2)); influenza B virus (B/Phuket/3073/13); adenovirus type 5 and 6; or respiratory syncytial virus (strain A2). Influenza B virus had the ability to most rapidly induce IFNs and ISGs as well as to stimulate excessive IFN-α, IFN-ß and IFN-λ secretion. It seems curious that IAV H1N1pdm did not induce IFN-λ secretion, but enhanced type I IFN and interleukin (IL)-6 production. We emphasized the importance of the negative regulation of virus-triggered signaling and cellular IFN response. We showed a decrease in IFNLR1 mRNA in the case of IBV infection. The attenuation of SOCS-1 expression in IAV H1N1pdm can be considered as the inability of the system to restore the immune status. Presumably, the lack of negative feedback loop regulation of proinflammatory immune response may be a factor contributing to the particular pathogenicity of several strains of influenza. Keywords: lambda interferons; MxA; influenza; respiratory syncytial virus; A549 cells.


Asunto(s)
Gripe Humana , Interferón lambda , Humanos , Gripe Humana/genética , Subtipo H3N2 del Virus de la Influenza A , Interferones/genética , Interferones/farmacología , Interferón-alfa/genética , Expresión Génica
5.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768759

RESUMEN

Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.


Asunto(s)
Colorantes Fluorescentes , Neuronas , Potenciales de la Membrana/fisiología , Membrana Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Imagen Óptica
6.
Viruses ; 14(10)2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298646

RESUMEN

In this study, we developed a novel, multiplex qPCR assay for simultaneous detection of RIG-1, MDA5, and IFIT-1 at the mRNA level. The assay was validated in A549 cells transfected with in vitro transcribed RNAs. Both exogenous RNA-GFP and self-amplifying (saRNA-GFP) induced significant expression of RIG-1, MDA5, IFIT-1, as well as type I and III interferons. In contrast, native RNA from intact A549 cells did not upregulate expression of these genes. Next, we evaluated RIG-1, MDA5, and IFIT-1 mRNA levels in the white blood cells of patients with influenza A virus (H3N2) or SARS-CoV-2. In acute phase (about 4 days after disease onset) both viruses induced these genes expression. Clinical observations of SARS-CoV-2 typically describe a two-step disease progression, starting with a mild-to-moderate presentation followed by a secondary respiratory worsening 9 to 12 days after the first onset of symptoms. It revealed that the expression of RIG-1, MDA5, and MxA was not increased after 2 and 3 weeks from the onset the disease, while for IFIT-1 it was observed the second peak at 21 day post infection. It is well known that RIG-1, MDA5, and IFIT-1 expression is induced by the action of interferons. Due to the ability of SOCS-1 to inhibit interferon-dependent signaling, and the distinct antagonism of SARS-CoV-2 in relation to interferon-stimulated genes expression, we assessed SOCS-1 mRNA levels in white blood cells. SARS-CoV-2 patients had increased SOCS-1 expression, while the influenza-infected group did not differ from heathy donors. Moreover, SOCS-1 mRNA expression remained stably elevated during the course of the disease. It can be assumed that augmented SOCS-1 expression is one of multiple mechanisms that allow SARS-CoV-2 to escape from the interferon-mediated immune response. Our results implicate SOCS-1 involvement in the pathogenesis of SARS-CoV-2.


Asunto(s)
COVID-19 , Interferones , Humanos , Interferones/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , SARS-CoV-2/genética , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Proteínas de Unión al ARN , ARN Mensajero/genética , Antivirales
7.
Viruses ; 14(6)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746794

RESUMEN

In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Anticuerpos Antivirales , Protección Cruzada , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control
8.
J Pharm Biomed Anal ; 210: 114575, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34999434

RESUMEN

In this work, we have extended our previously proposed approach for determining protein concentrations in human serum (using MALDI-TOF mass spectrometry) to include simultaneous analysis of several proteins associated with acute inflammation (alpha-2-macroglobulin, fetuin-A, serum amyloid A1). This technique can be used to diagnose systemic inflammation and provides results in 4-5 h. The developed approach was verified using standard immunological methods (ELISA). Samples from 87 individuals, in specific groups, were used for testing and validation: control; inflammatory soft tissue disease accompanied by sepsis; influenza A infection; or COVID-19. The feasibility of differentiating patient groups with the aforementioned conditions was analyzed using a combination of the inflammatory markers described. For fetuin-A and serum amyloid A1, diagnostically significant concentration ranges were established.


Asunto(s)
COVID-19 , Biomarcadores , Humanos , SARS-CoV-2 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
J Glob Infect Dis ; 14(4): 147-153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36636297

RESUMEN

Introduction: Respiratory infections, collectively, are one of the World's most common and serious illness groups. As recent observations have shown, the most severe courses of acute respiratory infection, often leading to death, are due to uncontrolled cytokine production (hypercytokinemia). Methods: The study involved 364 patients with respiratory illness being treated in clinics in St. Petersburg (Russia) in 2018-2019 and 30 healthy controls. Cytokine analysis was carried out in the acute phase of illness (2-3 days from onset of initial symptoms) and in the stage of recovery (days 9-10). The research presented is devoted to the assessment of mRNA expression of specific cytokines (interleukin [IL]-1b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, tumor necrosis factor-α [TNF-α], and interferon-λ) and MxA in whole blood leukocytes, by means of real-time polymerase chain reaction. Results: In 70% of patients, bacterial or viral pathogens were identified, with influenza viral infections (types A and B) prevailing. Significant increases in the expression of IL-18, TNF, and IL-10 were observed, relative to controls, only with influenza viral infections. We have shown a difference in IL-6 mRNA expression in patients with bacterial or viral pathogens. No statistically significant difference was found in white blood cells IL-4 expression levels between patients and healthy controls. Conclusion: Investigation of the nuances of systemic cytokine production, in response to specific viral and bacterial pathogens, makes it possible to assess the risks of developing hypercytokinemia during respiratory infection with agents circulating in the human population and to predict the pathogenicity and virulence of circulating threats.

10.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884976

RESUMEN

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Asunto(s)
Compuestos Azo/química , Bloqueadores de los Canales de Potasio/química , Teoría Cuántica , Tetraetilamonio/química , Termodinámica , Fenómenos Químicos , Cinética , Estereoisomerismo
11.
ACS Omega ; 6(28): 18099-18109, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308043

RESUMEN

We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 µm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 µm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 µA) and linear ranges (10-300 and 300-1500 µA) as well as the highest sensitivities of 18,570 and 2929 µA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.

12.
Front Microbiol ; 12: 662028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936018

RESUMEN

Pigs have long been recognized as "mixing vessels" in which new viruses are formed by reassortment involving various influenza virus lineages (avian, animal, human). However, surveillance of swine influenza viruses only gained real significance after the 2009 pandemic. A fundamentally important point is the fact that there is still no regular surveillance of swine flu in Russia, and the role of swine viruses is underestimated since, as a rule, they do not cause serious disease in animals. Since the pig population in Russia is large, it is obvious that the lack of monitoring and insufficient study of swine influenza evolution constitutes a gap in animal influenza surveillance, not only for Russia, but globally. A 6 year joint effort enabled identification of SIV subtypes that circulate in the pig population of Russia's European geographic region. The swine influenza viruses isolated were antigenically and genetically diverse. Some were similar to human influenza viruses of A(H1N1)pdm09 and A(H3N2) subtype, while others were reassortant A(H1pdm09N2) and A(H1avN2) and were antigenically distinct from human H1N1 and H1N1pdm09 strains. Analysis of swine serum samples collected throughout the seasons showed that the number of sera positive for influenza viruses has increased in recent years. This indicates that swine populations are highly susceptible to infection with human influenza viruses. It also stresses the need for regular SIV surveillance, monitoring of viral evolution, and strengthening of pandemic preparedness.

13.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809708

RESUMEN

A typical feature of proteins from the rhodopsin family is the sensitivity of their absorption band maximum to protein amino acid composition. For this reason, studies of these proteins often require methodologies that determine spectral shift caused by amino acid substitutions. Generally, quantum mechanics/molecular mechanics models allow for the calculation of a substitution-induced spectral shift with high accuracy, but their application is not always easy and requires special knowledge. In the present study, we propose simple models that allow us to estimate the direct effect of a charged or polar residue substitution without extensive calculations using only rhodopsin three-dimensional structure and plots or tables that are provided in this article. The models are based on absorption maximum values calculated at the SORCI+Q level of theory for cis- and trans-forms of retinal protonated Schiff base in an external electrostatic field of charges and dipoles. Each value corresponds to a certain position of a charged or polar residue relative to the retinal chromophore. The proposed approach was evaluated against an example set consisting of twelve bovine rhodopsin and sodium pumping rhodopsin mutants. The limits of the applicability of the models are also discussed. The results of our study can be useful for the interpretation of experimental data and for the rational design of rhodopsins with required spectral properties.


Asunto(s)
Aminoácidos/química , Proteínas Bacterianas/química , Modelos Moleculares , Rodopsina/química , Análisis Espectral , Electricidad Estática , Sustitución de Aminoácidos , Animales , Bovinos , Mutación/genética , Protones , Rodopsina/genética , Bases de Schiff/química
14.
Biosensors (Basel) ; 12(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35049636

RESUMEN

In this study, we discuss the mechanisms behind changes in the conductivity, low-frequency noise, and surface morphology of biosensor chips based on graphene films on SiC substrates during the main stages of the creation of biosensors for detecting influenza viruses. The formation of phenylamine groups and a change in graphene nano-arrangement during functionalization causes an increase in defectiveness and conductivity. Functionalization leads to the formation of large hexagonal honeycomb-like defects up to 500 nm, the concentration of which is affected by the number of bilayer or multilayer inclusions in graphene. The chips fabricated allowed us to detect the influenza viruses in a concentration range of 10-16 g/mL to 10-10 g/mL in PBS (phosphate buffered saline). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed that these defects are responsible for the inhomogeneous aggregation of antibodies and influenza viruses over the functionalized graphene surface. Non-uniform aggregation is responsible for a weak non-linear logarithmic dependence of the biosensor response versus the virus concentration in PBS. This feature of graphene nano-arrangement affects the reliability of detection of extremely low virus concentrations at the early stages of disease.


Asunto(s)
Técnicas Biosensibles , Grafito , Orthomyxoviridae , Virus , Conductividad Eléctrica , Reproducibilidad de los Resultados
15.
Pathogens ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255985

RESUMEN

Interferons (IFN) are crucial for the innate immune response. Slightly more than two decades ago, a new type of IFN was discovered: the lambda IFN (type III IFN). Like other IFN, the type III IFN display antiviral activity against a wide variety of infections, they induce expression of antiviral, interferon-stimulated genes (MX1, OAS, IFITM1), and they have immuno-modulatory activities that shape adaptive immune responses. Unlike other IFN, the type III IFN signal through distinct receptors is limited to a few cell types, primarily mucosal epithelial cells. As a consequence of their greater and more durable production in nasal and respiratory tissues, they can determine the outcome of respiratory infections. This review is focused on the role of IFN-λ in the pathogenesis of respiratory viral infections, with influenza as a prime example. The influenza virus is a major public health problem, causing up to half a million lethal infections annually. Moreover, the virus has been the cause of four pandemics over the last century. Although IFN-λ are increasingly being tested in antiviral therapy, they can have a negative influence on epithelial tissue recovery and increase the risk of secondary bacterial infections. Therefore, IFN-λ expression deserves increased scrutiny as a key factor in the host immune response to infection.

16.
J Immunol Methods ; 478: 112712, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31783022

RESUMEN

Upper respiratory tract infections are the world's most common infectious disease. The etiologic agents behind upper respiratory tract infections (URTIs) are, in fact, a diverse set of pathogens such as influenza, parainfluenza, adenovirus, rhinovirus, and others. More than 200 pathogens are known to be involved. Differential diagnosis of viral infections is sometimes complicated by their diversity or similarity of clinical presentation. This work is devoted to the development of a method which enables simultaneous detection of six common viral URTI pathogens: IAV; IBV; RSV; hAdV; hPIV2; and hPIV3. Antibody microarray technology is utilized to accomplish the analysis. In preparation for protein microchip creation, we produced, characterized, and selected approximately 50 monoclonal antibodies; for each of the aforementioned pathogens, an optimal monoclonal antibody pair was selected. A protein microchip was created, and its core working conditions were optimized. With a balance between convenience and maximal assay sensitivity in mind, a one-step analysis approach was developed for accomplishing the ELISA-like "sandwich" interaction on the manufactured microchip (antibody microarray). Reference viral strains were used to establish the lower limits of detection (LoD) for the assay. For IAV, the LoD was 0.25 ng/ml total viral protein. For other viruses, the LoD ranged from 1 to 2 ng/ml total protein. These sensitivity limits are slightly better than those of standard ELISA, but inferior to those of PCR. Overall, we believe that the developed microchip is a good alternative to existing methods, allowing relatively quick (overnight), inexpensive, simultaneous screening of several pathogens. The design of the antibody microarray is conducive to further development, and the panel of analyzed pathogens can be expanded to include approximately 50 members.


Asunto(s)
Antígenos Virales/aislamiento & purificación , Análisis por Matrices de Proteínas/métodos , Infecciones del Sistema Respiratorio/diagnóstico , Proteínas Virales/aislamiento & purificación , Virosis/diagnóstico , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Antígenos Virales/inmunología , Línea Celular , ADN Viral/aislamiento & purificación , Diagnóstico Diferencial , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Hibridomas , Límite de Detección , Ratones , Reacción en Cadena de la Polimerasa , ARN Viral/aislamiento & purificación , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Proteínas Virales/inmunología , Virosis/inmunología , Virosis/virología
17.
Sci Rep ; 9(1): 18240, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796757

RESUMEN

Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.


Asunto(s)
Acridinas/farmacología , Apoptosis/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Acridonas/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Meglumina/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
18.
Antiviral Res ; 158: 147-160, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30092251

RESUMEN

In the present study, a highly effective carrier system has been developed for the delivery of antiviral siRNA mixtures. The developed hybrid microcarriers, made of biodegradable polymers and SiO2 nanostructures, more efficiently mediate cellular uptake of siRNA than commercially available liposome-based reagents and polyethyleneimine (PEI); they also demonstrate low in vitro toxicity and protection of siRNA from RNase degradation. A series of siRNA designs (targeting the most conserved regions of three influenza A virus (IAV) genes: NP, NS, and PA) were screened in vitro using RT-qPCR, ELISA analysis, and hemagglutination assay. Based on the results of screening, the three most effective siRNAs (PA-1630, NP-717, and NS-777) were selected for in situ encapsulation into hybrid microcarriers. It was revealed that pre-treatment of cells with a mixture of PA-1630, NP-717, and NS-777 siRNAs, delivered by hybrid microcarriers, provided stronger inhibition of viral M1 mRNA expression and control of NP protein level, after viral infection, than single pre-treatment by any of three encapsulated siRNAs used in the study. Moreover, the effective inhibition of replication in several IAV subtypes (H1N1, H1N1pdm, H5N2, and H7N9) using a cocktail of the three selected siRNAs, delivered by our hybrid capsules to the cells, was achieved. In conclusion, we have developed a proof-of-principle which shows that our hybrid microcarrier technology (utilizing a therapeutic siRNA cocktail) may represent a promising approach in anti-influenza therapy.


Asunto(s)
Antivirales/farmacología , Sistemas de Liberación de Medicamentos/métodos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Células A549 , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Perros , Células Epiteliales , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Liposomas , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside , Polietileneimina , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Dióxido de Silicio , Proteínas del Núcleo Viral/metabolismo , Proteínas de la Matriz Viral , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
19.
Nanoscale Res Lett ; 13(1): 139, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740776

RESUMEN

Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

20.
Sci Rep ; 7(1): 102, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273907

RESUMEN

The implementation of RNAi technology into the clinical practice has been significantly postponing due to the issues regarding to the delivery of naked siRNA predominantly to target cells. Here we report the approach to enhance the efficiency of siRNA delivery by encapsulating the siRNA into new carrier systems which are obtained via the combination of widely used layer-by-layer technique and in situ modification by sol-gel chemistry. We used three types of siRNAs (NP-717, NP-1155 and NP-1496) in encapsulated form as new therapeutic agents against H1N1 influenza virus infection. By employing the hybrid microcontainers for the siRNA encapsulation we demonstrate the reduction of viral nucleoprotein (NP) level and inhibition of influenza virus production in infected cell lines (MDCK and A549). The obtained hybrid carriers based on assembled biodegradable polyelectrolytes and sol-gel coating possess several advantages such as a high cell uptake efficiency, low toxicity, efficient intracellular delivery of siRNAs and the protection of siRNAs from premature degradation before reaching the target cells. These findings underpin a great potential of versatile microencapsulation technology for the development of anti-viral RNAi delivery systems against influenza virus infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Polielectrolitos/química , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Células A549 , Animales , Cápsulas , Perros , Regulación hacia Abajo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/tratamiento farmacológico , Células de Riñón Canino Madin Darby , Proteínas de la Nucleocápside , ARN Interferente Pequeño/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...