Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131608

RESUMEN

Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE: Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.

2.
bioRxiv ; 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34268508

RESUMEN

Drug development for specific antiviral agents against coronavirus disease 2019 (COVID-19) is still an unmet medical need as the pandemic continues to spread globally. Although huge efforts for drug repurposing and compound screens have put forth, only few compounds remain in late stage clinical trials. New approaches and assays are needed to accelerate COVID-19 drug discovery and development. Here we report a time-resolved fluorescence resonance energy transfer-based assay that detects the severe acute respiratory syndrome coronavirus 2 (SARS-CoV­2) nucleocapsid protein (NP) produced in infected cells. It uses two specific anti-NP monoclonal antibodies (MAbs) conjugated to donor and acceptor fluorophores that produces a robust ratiometric signal for high throughput screening of large compound collections. Using this assay, we measured a half maximal inhibitory concentration (IC 50 ) for Remdesivir of 9.3 µM against infection with SARS-CoV-2 USA/WA1/2020 (WA-1). The assay also detected SARS-CoV-2 South African (Beta, ß), Brazilian/Japanese variant P.1 (Gamma, γ), and Californian (Epsilon, ε), variants of concern or interest (VoC). Therefore, this homogeneous SARS-CoV-2 NP detection assay can be used for accelerating lead compound discovery for drug development and for evaluating drug efficacy against emerging SARS-CoV-2 VoC.

3.
J Virol ; 95(17): e0040221, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133899

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University's COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, -6, -7a, -7b, and -8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Sistemas de Lectura Abierta/inmunología , SARS-CoV-2 , Proteínas Virales , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Animales , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Células Vero , Proteínas Virales/genética , Proteínas Virales/inmunología
4.
Sci Rep ; 10(1): 512, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949262

RESUMEN

Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family that has been known to circulate for decades causing mild febrile illness. The more recent ZIKV outbreaks in the Americas and the Caribbean associated with congenital malformations and Guillain-Barré syndrome in adults have placed public health officials in high alert and highlight the significant impact of ZIKV on human health. New technologies to study the biology of ZIKV and to develop more effective prevention options are highly desired. In this study we demonstrate that direct delivery in mice of an infectious ZIKV cDNA clone allows the rescue of recombinant (r)ZIKV in vivo. A bacterial artificial chromosome containing the sequence of ZIKV strain Paraiba/2015 under the control of the cytomegalovirus promoter was complexed with a commercial transfection reagent and administrated using different routes in type-I interferon receptor deficient A129 mice. Clinical signs and death associated with ZIKV viremia were observed in mice. The rZIKV recovered from these mice remained fully virulent in a second passage in mice. Interestingly, infectious rZIKV was also recovered after intraperitoneal inoculation of the rZIKV cDNA in the absence of transfection reagent. Further expanding these studies, we demonstrate that a single intraperitoneal inoculation of a cDNA clone encoding an attenuated rZIKV was safe, highly immunogenic, and provided full protection against lethal ZIKV challenge. This novel in vivo reverse genetics method is a potentially suitable delivery platform for the study of wild-type and live-attenuated ZIKV devoid of confounding factors typical associated with in vitro systems. Moreover, our results open the possibility of employing similar in vivo reverse genetic approaches for the generation of other viruses and, therefore, change the way we will use reverse genetics in the future.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , ADN Complementario/genética , Vectores Genéticos/administración & dosificación , Viremia/prevención & control , Infección por el Virus Zika/prevención & control , Virus Zika/genética , Animales , Chlorocebus aethiops , ADN Complementario/inmunología , ADN Viral/genética , ADN Viral/inmunología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Receptor de Interferón alfa y beta/genética , Genética Inversa , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Células Vero , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Viremia/genética , Viremia/inmunología , Virus Zika/inmunología , Infección por el Virus Zika/genética , Infección por el Virus Zika/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...