Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 26(4): 686-699, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38372577

RESUMEN

An environmental toxicological assessment of fourteen furanic compounds serving as valuable building blocks produced from biomass was performed. The molecules selected included well studied compounds serving as control examples to compare the toxicity exerted against a variety of highly novel furans which have been additionally targeted as potential or current alternatives to biofuels, building blocks and polymer monomers. The impact of the furan platform chemicals targeted on widely applied ecotoxicity model organisms was determined employing the marine bioluminescent bacterium Aliivibrio fischeri and the freshwater green microalgae Raphidocelis subcapitata, while their ecotoxicity effects on plants were assessed using dicotyledonous plants Sinapis alba and Lepidium sativum. Regarding the specific endpoints evaluated, the furans tested were slightly toxic or practically nontoxic for A. fischeri following 5 and 15 min of exposure. Moreover, most of the building blocks did not affect the growth of L. sativum and S. alba at 150 mg L-1 for 72 h of exposure. Specifically, 9 and 11 out of the 14 furan platform chemicals tested were non-effective or stimulant for L. sativum and S. alba respectively. Given that furans comprise common inhibitors in biorefinery fermentations, the growth inhibition of the specific building blocks was studied using the industrial workhorse yeast Saccharomyces cerevisiae, demonstrating insignificant inhibition on eukaryotic cell growth following 6, 12 and 16 h of exposure at a concentration of 500 mg L-1. The study provides baseline information to unravel the ecotoxic effects and to confirm the green aspects of a range of versatile biobased platform molecules.


Asunto(s)
Aliivibrio fischeri , Biomasa , Furanos , Furanos/toxicidad , Aliivibrio fischeri/efectos de los fármacos , Lepidium sativum/efectos de los fármacos , Lepidium sativum/crecimiento & desarrollo , Ecotoxicología/métodos , Bioensayo/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Pruebas de Toxicidad/métodos , Sinapis/efectos de los fármacos , Microalgas/efectos de los fármacos
2.
Biotechnol Adv ; 71: 108307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185432

RESUMEN

Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Productos Biológicos/farmacología , Bioensayo/métodos
3.
Environ Sci Pollut Res Int ; 30(42): 95464-95474, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37548791

RESUMEN

Seagrasses harbour different and rich epiphytic bacterial communities. These microbes may establish intimate and symbiotic relationships with the seagrass plants and change according to host species, environmental conditions, and/or ecophysiological status of their seagrass host. Although Posidonia oceanica is one of the most studied seagrasses in the world, and bacteria associated with seagrasses have been studied for over a decade, P. oceanica's microbiome remains hitherto little explored. Here, we applied 16S rRNA amplicon sequencing to explore the microbiome associated with the leaves of P. oceanica growing in two geomorphologically different meadows (e.g. depth, substrate, and turbidity) within the Limassol Bay (Cyprus). The morphometric (leaf area, meadow density) and biochemical (pigments, total phenols) descriptors highlighted the healthy conditions of both meadows. The leaf-associated bacterial communities showed similar structure and composition in the two sites; core microbiota members were dominated by bacteria belonging to the Thalassospiraceae, Microtrichaceae, Enterobacteriaceae, Saprospiraceae, and Hyphomonadaceae families. This analogy, even under different geomorphological conditions, suggest that in the absence of disturbances, P. oceanica maintains characteristic-associated bacterial communities. This study provides a baseline for the knowledge of the P. oceanica microbiome and further supports its use as a putative seagrass descriptor.


Asunto(s)
Alismatales , Humanos , ARN Ribosómico 16S/análisis , Alismatales/química , Bacterias , Hojas de la Planta/química , Enterobacteriaceae , Mar Mediterráneo
4.
Trends Biotechnol ; 41(11): 1327-1331, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37355443

RESUMEN

Blue Biotechnology is developing rapidly worldwide. However, the Nagoya Protocol (NP), Responsible Research and Innovation (RRI) and other regulatory requirements in this field are falling behind. This article identifies the main RRI, NP, and regulatory gaps and provides key recommendations to mitigate these challenges.

5.
Ecol Evol ; 13(2): e9800, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36861027

RESUMEN

Despite significant population declines and targeted European Union regulations aimed at Anguilla anguilla conservation, little attention has been given to their status at their easternmost range. This study applies wide-scale integrated monitoring to uncover the present-day eel distribution in Cyprus' inland freshwaters. These are subject to increasing pressures from water supply requirements and dam construction, as seen throughout the Mediterranean. We applied environmental DNA metabarcoding of water samples to determine A. anguilla distribution in key freshwater catchments. In addition, we present this alongside 10 years of electrofishing/netting data. Refuge traps were also deployed to establish the timing of glass eel recruitment. These outputs are used together, alongside knowledge of the overall fish community and barriers to connectivity, to provide eel conservation and policy insights. This study confirm the presence of A. anguilla in Cyprus' inland freshwaters, with recruitment occurring in March. Eel distribution is restricted to lower elevation areas, and is negatively associated with distance from coast and barriers to connectivity. Many barriers to connectivity are identified, though eels were detected in two reservoirs upstream of dams. The overall fish community varies between freshwater habitat types. Eels are much more widespread in Cyprus than previously thought, yet mostly restricted to lowland intermittent systems. These findings make a case to reconsider the requirement for eel management plans. Environmental DNA-based data collected in 2020 indicate that "present-day" eel distribution is representative of 10-year survey trends. Suggesting that inland freshwaters may act as an unrealized refuge at A. anguilla's easternmost range. Conservation efforts in Mediterranean freshwaters should focus on improving connectivity, therefore enabling eels to access inland perennial refugia. Thus, mitigating the impact of climate change and the growing number of fragmented artificially intermittent river systems.

6.
Mar Drugs ; 20(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35621941

RESUMEN

As the quest for marine-derived compounds with pharmacological and biotechnological potential upsurges, the importance of following regulations and applying Responsible Research and Innovation (RRI) also increases. This article aims at: (1) presenting an overview of regulations and policies at the international and EU level, while demonstrating a variability in their implementation; (2) highlighting the importance of RRI in biodiscovery; and (3) identifying gaps and providing recommendations on how to improve the market acceptability and compliance of novel Blue Biotechnology compounds. This article is the result of the work of the Working Group 4 "Legal aspects, IPR and Ethics" of the COST Action CA18238 Ocean4Biotech, a network of more than 130 Marine Biotechnology scientists and practitioners from 37 countries. Three qualitative surveys ("Understanding of the Responsible Research and Innovation concept", "Application of the Nagoya Protocol in Your Research", and "Brief Survey about the experiences regarding the Nagoya Protocol") indicate awareness and application gaps of RRI, the Nagoya Protocol, and the current status of EU policies relating to Blue Biotechnology. The article categorises the identified gaps into five main categories (awareness, understanding, education, implementation, and enforcement of the Nagoya Protocol) and provides recommendations for mitigating them at the European, national, and organisational level.


Asunto(s)
Biotecnología
7.
Ecotoxicol Environ Saf ; 232: 113213, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085885

RESUMEN

Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. ß-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.


Asunto(s)
Plásticos , Agua de Mar , Bacterias/genética , ARN Ribosómico 16S/genética , Ríos , Agua de Mar/microbiología
8.
Environ Sci Pollut Res Int ; 28(27): 36506-36522, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33709312

RESUMEN

Bilge wastewater is a high strength, typically saline wastewater, originating from operation of ships. In this study, the treatment of real bilge wastewater was tested using pure isolated aerobic strains and mixed cultures (aerobic and anaerobic). The Chemical Oxygen Demand (COD) and ecotoxicity decrease were monitored over time, while the microbial dynamics alterations in mixed cultures were also recorded. The isolated strains Pseudodonghicola xiamenensis, Halomonas alkaliphila and Vibrio antiquaries were shown to significantly biodegrade bilge wastewater. Reasonable COD removal rates were achieved by aerobic mixed cultures (59%, 9 days), while anaerobic mixed cultures showed lower performance (34%, 51 days). The genus Pseudodonghicola was identified as dominant under aerobic conditions both in the mixed cultures and in the control sample (raw wastewater), after exposure to bilge wastewater, demonstrating natural proliferation of the genus and potential contribution to COD reduction. Biodegradation rates were higher when initial organic load was high, while the toxicity of raw wastewater partially decreased after treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Reactores Biológicos , Halomonas , Rhodobacteraceae , Aguas del Alcantarillado , Aguas Residuales/análisis
9.
Chemosphere ; 272: 129814, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33582508

RESUMEN

Human activities are the leading cause of environmental impairments. Appropriate biomonitoring of ecosystems is needed to assess these activities effectively. In freshwater ecosystems, periphytic and epilithic biofilms have diatom assemblages. These assemblages respond rapidly to environmental changes, making diatoms valuable bioindicators. For this reason, freshwater biomonitoring programs are currently using diatoms (e.g., Water Framework Directive). In the past ten years, DNA metabarcoding coupled with next-generation sequencing and bioinformatics represents a complementary approach for diatom biomonitoring. In this study, this approach is used for the first time in Cyprus by considering the association of environmental and anthropogenic pressures to diatom assemblages. Statistical analysis was then applied to identify the environmental (i.e., river types, geo-morphological) and anthropogenic (i.e., physicochemical, human land-use pressures) variables' role in the observed diatom diversity. Results indicate differences in diatom assemblages between intermittent and perennial rivers. Achnanthidium minutissimum was more abundant in intermittent rivers; whereas Amphora pediculus and Planothidium caputium in perennial ones. Additionally, we could demonstrate the correlation between nutrients (e.g., nitrogen, phosphorus), stations' local characteristics (e.g., elevation), and land use activities on the observed differences in diatom diversity. Finally, we conclude that multi-stressors and anthropogenic pressures together as multiple stressors have a significant statistical relationship to the observed diatom diversity and play a pivotal role in determining Cyprus' rivers' ecological status.


Asunto(s)
Diatomeas , Ríos , Chipre , Código de Barras del ADN Taxonómico , Diatomeas/genética , Ecosistema , Monitoreo del Ambiente , Humanos
10.
Sci Total Environ ; 756: 144079, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33308859

RESUMEN

The present study comprehensively investigates the phototransformation and ecotoxicity of a mixture of twelve pharmaceutically active compounds (PhACs) susceptible to photolysis. Namely, three antibiotics (ciprofloxacin, levofloxacin, moxifloxacin), three antidepressants (bupropion, duloxetine, olanzapine), three anti-inflammatory drugs (diclofenac, ketoprofen, nimesulide), two beta-blockers (propranolol, timolol) and the antihistamine ranitidine were treated under simulated solar irradiation in ultra-pure and river water. A total of 166 different transformation products (TPs) were identified by ultra-high performance liquid chromatography coupled with Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap HRMS), revealing the formation of twelve novel TPs and forty-nine not previously described in photolytic studies. The kinetic profiles of the major TPs resulting from a series of chemical reactions involving hydroxylation, cleavage and oxidation, dehalogenation, decarboxylation, dealkylation and photo substitution have been investigated and the transformation pathways have been suggested. Additionally, an in vitro approach to the toxicity assessment of daphnids was contrasted with ecotoxicity data based on the Ecological Structure Activity Relationships (ECOSAR) software comprising the in silico tool to determine the adverse effects of the whole mixture of photolabile parent compounds and TPs. The results demonstrated that photolysis of the target mixture leads to a decrease of the observed toxicity.


Asunto(s)
Cetoprofeno , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Simulación por Computador , Fotólisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Travel Med Infect Dis ; 35: 101691, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32334085

RESUMEN

Aedes albopictus, also known as the "Asian Tiger Mosquito", is an invasive mosquito species to Europe causing high concern in public health due to its severe nuisance and its vectorial capacity for pathogens such as dengue, chikungunya, yellow fever and Zika. Consequently, the responsible authorities implement management activities to reduce its population density, possibly to below noxious and epidemiological thresholds. In urban areas, these aims are difficult to achieve because of the species' ability to develop in a wide range of artificial breeding sites, mainly private properties. This document (Management Plan) has been structured to serve as a comprehensive practical and technical guide for stakeholders in organizing the vector control activities in the best possible way. The current plan includes coordinated actions such as standardized control measures and quality control activities, monitoring protocols, activities for stakeholders and local communities, and an emergency vector control plan to reduce the risk of an epidemic.


Asunto(s)
Aedes , Control de Mosquitos/métodos , Animales , Europa (Continente) , Especies Introducidas , Control de Mosquitos/organización & administración , Mosquitos Vectores
12.
Microb Cell Fact ; 19(1): 67, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32169079

RESUMEN

BACKGROUND: Lupanine is a plant toxin contained in the wastewater of lupine bean processing industries, which could be used for semi-synthesis of various novel high added-value compounds. This paper introduces an environmental friendly process for microbial production of enantiopure lupanine. RESULTS: Previously isolated P. putida LPK411, R. rhodochrous LPK211 and Rhodococcus sp. LPK311, holding the capacity to utilize lupanine as single carbon source, were employed as biocatalysts for resolution of racemic lupanine. All strains achieved high enantiomeric excess (ee) of L-(-)-lupanine (> 95%), while with the use of LPK411 53% of the initial racemate content was not removed. LPK411 fed with lupanine enantiomers as single substrates achieved 92% of D-(+)-lupanine biodegradation, whereas L-(-)-lupanine was not metabolized. Monitoring the transcriptional kinetics of the luh gene in cultures supplemented with the racemate as well as each of the enantiomers supported the enantioselectivity of LPK411 for D-(+)-lupanine biotransformation, while (trans)-6-oxooctahydro-1H-quinolizine-3-carboxylic acid was detected as final biodegradation product from D-(+)-lupanine use. Ecotoxicological assessment demonstrated that lupanine enantiomers were less toxic to A. fischeri compared to the racemate exhibiting synergistic interaction. CONCLUSIONS: The biological chiral separation process of lupanine presented here constitutes an eco-friendly and low-cost alternative to widely used chemical methods for chiral separation.


Asunto(s)
Biotransformación , Pseudomonas putida/metabolismo , Rhodococcus/metabolismo , Esparteína/análogos & derivados , Aguas Residuales/microbiología , Industria de Alimentos , Lupinus/química , Esparteína/metabolismo , Estereoisomerismo , Aguas Residuales/química
13.
J Hazard Mater ; 365: 88-96, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30412811

RESUMEN

Ionic liquids (ILs) have been characterized as contaminants of emerging concern (CEC) that often resist biodegradation and impose toxicity upon environmental release. Sphingomonas sp. MKIV has been isolated as an extreme microorganism capable for biodegradation of major classes of ILs. Six imidazolium-, pyridinium- and ammonium-based ILs (pyridinium trifluoromethanesulfonate [Py][CF3SO3], 1-(4-pyridyl)pyridinium chloride [1-4PPy][Cl], 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium methanesulfonate [BMIM][MeSO4], tetrabutylammonium iodide [n-Bu4N][I] and tetrabutylammonium hexafluorophosphate [n-Bu4N][PF6]) were used for microbial growth. The strain achieved 91% and 87% removal efficiency for cultures supplemented with 100 mg L-1 of [BMIM][MeSO4] and [n-Bu4N][I] respectively. The metabolic activity of MKIV was inhibited following preliminary stages of cultures conducted using [BMIM][MeSO4], [BMIM][Br], [Py][CF3SO3] and [n-Bu4N][PF6], indicating potential accumulation of inhibitory metabolites. Thus, a comprehensive toxicological study of the six ILs on Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata was conducted demonstrating that the compounds impose moderate and low toxicity. The end-products from [BMIM][MeSO4] and [n-Bu4N][I] biodegradation were assessed using Aliivibrio fischeri, exhibiting increased environmental impact of the latter following biotreatment. MKIV produced 19.29 g L-1 of biopolymer, comprising mainly glucose and galacturonic acid, from 25 g L-1 of glucose indicating high industrial significance for bioremediation and exopolysaccharide production.


Asunto(s)
Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Líquidos Iónicos/metabolismo , Líquidos Iónicos/toxicidad , Sphingomonas/metabolismo , Aliivibrio fischeri/efectos de los fármacos , Animales , Biodegradación Ambiental , Chlorophyceae/efectos de los fármacos , Daphnia/efectos de los fármacos , Polisacáridos Bacterianos/metabolismo , ARN Ribosómico 16S/genética , Sphingomonas/genética , Sphingomonas/aislamiento & purificación
14.
Chemosphere ; 193: 50-59, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29126065

RESUMEN

This work explores the potential for development of a lupanine valorization process evaluating different isolated microorganisms for their capacity to metabolize the alkaloid. Ecotoxicological assessment demonstrated that lupanine is toxic for Vibrio fischeri and Daphnia magna exhibiting EC50 values of 89 mg L-1 and 47 mg L-1 respectively, while acting both as growth inhibitor for a monocotyledonous and as promoter for a dicotyledonous plant. Among the eight aerobic and anaerobic strains isolated and identified Rhodococcus rhodochrous LPK211 achieved 81% removal for 1.5 g L-1 lupanine, while no end-products were detected by NMR constituting a promising microorganism for lupanine biodegradation. Moreover, Rhodococcus ruber LPK111 and Rhodococcus sp. LPK311 exhibited 66% and 71% of removal respectively, including potential formation of lupanine N-oxide. Pseudomonas putida LPK411 reached 80% of lupanine removal and generated three fermentation products potentially comprising 17-oxolupanine and lupanine derivatives with open ring structures enabling the development of alkaloid valorization processes.


Asunto(s)
Alcaloides/metabolismo , Biodegradación Ambiental , Esparteína/análogos & derivados , Aliivibrio fischeri/metabolismo , Alcaloides/análisis , Alcaloides/química , Animales , Daphnia/metabolismo , Magnoliopsida/metabolismo , Pseudomonas putida/metabolismo , Esparteína/análisis , Esparteína/química , Esparteína/metabolismo
15.
Environ Toxicol Chem ; 35(11): 2753-2764, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27043355

RESUMEN

The selection and prioritization of pharmaceuticals and their transformation products for evaluating effects on the environment and human health is a challenging task. One common approach is based on compounds (e.g., mixture composition, concentrations), and another on biology (e.g., relevant endpoint, biological organizational level). Both of these approaches often resemble a Lernaean Hydra-they can create more questions than answers. The present study embraces this complexity, providing an integrated approach toward assessing the potential effects of transformation products of pharmaceuticals by means of mutagenicity, estrogenicity, and differences in the gene expression profiles. Mutagenicity using the tk kinase assay was applied to assess a list of 11 priority pharmaceuticals, namely, atenolol, azithromycin, carbamazepine, diclofenac, ibuprofen, erythromycin, metoprolol, ofloxacin, propranolol, sulfamethoxazole, and trimethoprim. The most mutagenic compounds were found to be ß-blockers. In parallel, the photolabile pharmaceuticals were assessed for their mixture effects on mutagenicity (tk assay), estrogenicity (T47D- KBluc assay), and gene expression (microarrays). Interestingly, the mixtures were mutagenic at the µg/L level, indicating a synergistic effect. None of the photolysed mixtures were statistically significantly estrogenic. Gene expression profiling revealed effects related mainly to certain pathways, those of the p53 gene, mitogen-activated protein kinase, alanine, aspartate, and glutamate metabolism, and translation-related (spliceosome). Fourteen phototransformation products are proposed based on the m/z values found through ultra-performance liquid chromatography-tandem mass spectrometry analysis. The transformation routes of the photolysed mixtures indicate a strong similarity with those obtained for each pharmaceutical separately. This finding reinforces the view that transformation products are to be expected in naturally occurring mixtures. Environ Toxicol Chem 2016;35:2753-2764. © 2016 SETAC.


Asunto(s)
Antagonistas Adrenérgicos beta/toxicidad , Mezclas Complejas/toxicidad , Mutágenos/toxicidad , Preparaciones Farmacéuticas/análisis , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antagonistas Adrenérgicos beta/análisis , Antagonistas Adrenérgicos beta/efectos de la radiación , Animales , Línea Celular Tumoral , Mezclas Complejas/análisis , Mezclas Complejas/efectos de la radiación , Perfilación de la Expresión Génica , Humanos , Ratones , Análisis por Micromatrices , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutágenos/análisis , Mutágenos/efectos de la radiación , Ofloxacino , Preparaciones Farmacéuticas/efectos de la radiación , Fotólisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/efectos de la radiación
16.
J Am Mosq Control Assoc ; 25(2): 199-202, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19653503

RESUMEN

The Cyprus Public Health Service has regularly conducted mosquito surveillance in the Republic of Cyprus over the past 10 years. Twenty-three species belonging to 6 genera and 10 subgenera have been recorded to date, including species documented from earlier surveys. As a result of this program, new mosquito species for Cyprus have been recorded, including Anopheles marteri, Culex theileri, Cx. impudicus, Culiseta subochrea, and Uranotaenia unguiculata. Importantly, mosquito species previously considered eradicated have reemerged (An. sacharovi). Monitoring and identification of mosquito species is an important component of the Public Heath Service's commitment to protecting the health of residents and preventing the spread of vector-borne diseases.


Asunto(s)
Culicidae/clasificación , Animales , Biodiversidad , Culicidae/fisiología , Chipre , Geografía , Control de Mosquitos , Densidad de Población
17.
J Med Entomol ; 46(4): 881-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19645293

RESUMEN

Culex pipiens pipiens L. populations on Cyprus were sampled over a 6-yr period from 2002 to 2008 to evaluate the status of insecticide resistance toward the insecticides temephos, chlorpyrifos, and permethrin and to study susceptibility levels toward the recently introduced bacterial insecticide Bacillus thuringiensis subsp. israelensis De Barjac and the juvenile hormone analog, methoprene. Susceptibility to the three conventional chemical insecticides varied between different collections, with most collections showing moderate or low resistance. The 2004 Akrotiri collection had the highest temephos resistance ratio, 167-fold at the LC95, although later sampling showed that the population returned to susceptibility after treatments stopped. Chlorpyrifos resistance was generally higher than temephos resistance. Four collections showed high resistance, and the resistance ratios of two collections were notably high with resistance ratios of 110- and 248-fold at the LC95. Three collections showed high permethrin resistance (22.5-, 23.9-, and 86.3-fold). The frequency of elevated esterase activity in populations was estimated using a filter paper test, and frequencies varied from 0.9 to 65% among collections. The levels of temephos resistance and the frequency of elevated esterases in this survey were generally lower than in earlier reports, suggesting a decline in temephos resistance. Dose-response values for B. thuringiensis subsp. israelensis covered an approximate eight-fold range, but no resistance was detected. Methoprene values showed a 4.7-fold and 16-fold range at the LC50 and LC95, respectively. Two populations showed significant resistance ratios at the LC95. These data are discussed in relation to the changes in larval control practices underway in Cyprus.


Asunto(s)
Bacillus thuringiensis , Culex , Insecticidas , Metopreno , Control de Mosquitos/métodos , Animales , Chipre , Resistencia a los Insecticidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...