Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sci Adv ; 10(18): eadl1922, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691604

RESUMEN

The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.


Asunto(s)
Cromosomas Humanos Par 10 , Cromosomas Humanos Par 4 , Genotipo , Proteínas de Homeodominio , Distrofia Muscular Facioescapulohumeral , Fenotipo , Telómero , Humanos , Cromosomas Humanos Par 10/genética , Cromosomas Humanos Par 4/genética , Sistemas CRISPR-Cas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Mioblastos/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Telómero/genética , Telómero/metabolismo , Translocación Genética
2.
Int J Infect Dis ; 142: 106994, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447753

RESUMEN

OBJECTIVES: Despite successful human immunodeficiency virus (HIV) control with combination antiretroviral therapy (cART), individuals with HIV still face health risks, including cancers, cardiovascular and neurocognitive diseases. An HIV protein, Tat, is potentially involved in these HIV-related diseases. Previous studies demonstrated circulating Tat in the blood of untreated people with HIV. Here, we measured Tat levels in the serum of cART-treated people with HIV to examine the effect of cART on Tat production. METHODS: Serum samples from 63 HIV-positive and 20 HIV-seronegative individuals were analyzed using an ELISA assay that detected Tat concentrations above 2.5 ng/mL. RESULTS: Among HIV-positive individuals, the Tat level ranged from 0 to 14 ng/mL. 25.4% (16 out of 63) exceeded the 2.5 ng/mL cut-off, with a median HIV Tat level of 4.518 [3.329-8.120] ng/mL. No correlation was revealed between Tat levels and CD4+ T cell counts, serum HIV RNA, p24 antigen, or anti-Tat levels. CONCLUSIONS: Despite cART, circulating HIV Tat persists and may contribute to HIV-related diseases. This emphasizes the need for further research on the mechanisms of Tat action in non-infected cells where it can penetrate upon circulation in the blood.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Linfocitos T CD4-Positivos , Recuento de Linfocito CD4
3.
J Med Virol ; 96(2): e29423, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285479

RESUMEN

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


Asunto(s)
Linfocitos B , Infecciones por Virus de Epstein-Barr , Infecciones por VIH , Linfoma , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , Regulación hacia Abajo , Herpesvirus Humano 4/genética , Infecciones por VIH/genética , VIH-1/genética , Cadenas HLA-DRB1 , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
4.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759535

RESUMEN

Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.


Asunto(s)
Endocitosis , Endocitosis/efectos de los fármacos
5.
NAR Cancer ; 5(3): zcad049, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37750169

RESUMEN

Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.

6.
Antioxidants (Basel) ; 12(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36978858

RESUMEN

Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes-MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox-to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.

7.
J Med Virol ; 95(3): e28633, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866703

RESUMEN

Burkitt lymphoma (BL) is a B cell malignancy associated with the Epstein-Barr virus (EBV). Most BL cases are characterized by a t(8;14) chromosomal translocation involving the MYC oncogene and the immunoglobulin heavy chain gene (IGH). The role of EBV in promoting this translocation remains largely unknown. Here we provide the experimental evidence that EBV reactivation from latency leads to an increase in the proximity between the MYC and IGH loci, otherwise located far away in the nuclear space both in B-lymphoblastoid cell lines and in patients' B-cells. Specific DNA damage within the MYC locus, followed by the MRE11-dependent DNA repair plays a role in this process. Using a CRISPR/Cas9-based B cell model to induce specific DNA double strand breaks in MYC and IGH loci, we have shown that the MYC-IGH proximity induced by EBV reactivation leads to an increased t(8;14) translocation frequency.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Genes de las Cadenas Pesadas de las Inmunoglobulinas
8.
Mol Ther ; 31(4): 924-933, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36755493

RESUMEN

The human genome is folded into a multi-level 3D structure that controls many nuclear functions including gene expression. Recently, alterations in 3D genome organization were associated with several genetic diseases and cancer. As a consequence, experimental approaches are now being developed to modify the global 3D genome organization and that of specific loci. Here, we discuss emerging experimental approaches of 3D genome editing that may prove useful in biomedicine.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Genoma Humano , Núcleo Celular , Neoplasias/genética , Neoplasias/terapia , Sistemas CRISPR-Cas
9.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674896

RESUMEN

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Asunto(s)
COVID-19 , Lesión Pulmonar , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , COVID-19/complicaciones , Fibrosis , Plasminógeno , Bleomicina/toxicidad
10.
Gene Ther ; 30(1-2): 167-171, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-32999452

RESUMEN

B-cell lines and primary PBMCs are notoriously hard to transfect, thus making genome editing, ectopic gene expression, or gene silencing experiments particularly tedious. Here we propose a novel efficient and reproducible protocol for electrotransfection of lymphoblastoid, B-cell lymphoma, leukemia cell lines, and B cells from PBMCs. The proposed protocol requires neither costly equipment nor expensive reagents; it can be used with small or large plasmids. Transfection and viability rates of about 79% and 58%, respectively, have been routinely achieved by optimizing the salt concentration in the electrotransfection medium and the amount of plasmid used. A validation of the protocol was obtained via the generation of a TP53-/- RPMI8866 lymphoblastoid cell line which should prove useful in future hematological and blood cancer studies.


Asunto(s)
Expresión Génica Ectópica , Edición Génica , Humanos , Edición Génica/métodos , Transfección , Línea Celular , Plásmidos
11.
Int J Cancer ; 152(7): 1288-1289, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510743
13.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552850

RESUMEN

Over the years, our vision of the genome has changed from a linear molecule to that of a complex 3D structure that follows specific patterns and possesses a hierarchical organization. Currently, genomics is becoming "four-dimensional": our attention is increasingly focused on the study of chromatin dynamics over time, in the fourth dimension. Recent methods for visualizing the movements of chromatin loci in living cells by targeting fluorescent proteins can be divided into two groups. The first group requires the insertion of a special sequence into the locus of interest, to which proteins that recognize the sequence are recruited (e.g., FROS and ParB-INT methods). In the methods of the second approach, "programmed" proteins are targeted to the locus of interest (i.e., systems based on CRISPR/Cas, TALE, and zinc finger proteins). In the present review, we discuss these approaches, examine their strengths and weaknesses, and identify the key scientific problems that can be studied using these methods.


Asunto(s)
Cromatina , Genoma , Genómica , Diagnóstico por Imagen
14.
PeerJ ; 10: e13986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275462

RESUMEN

An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.


Asunto(s)
VIH-1 , Linfoma de Células B , Humanos , VIH-1/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Expresión Génica Ectópica , Linfoma de Células B/genética , Expresión Génica
15.
Cancers (Basel) ; 14(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291894

RESUMEN

Chromosomal translocations are products of the illegitimate repair of DNA double-strand breaks (DSBs). Their formation can bring about significant structural and molecular changes in the cell that can be physiologically and pathologically relevant. The induced changes may lead to serious and life-threatening diseases such as cancer. As a growing body of evidence suggests, the formation of chromosomal translocation is not only affected by the mere close spatial proximity of gene loci as potential translocation partners. Several factors may affect formation of chromosomal translocations, including chromatin motion to the potential sources of DSBs in the cell. While these can be apparently random events, certain chromosomal translocations appear to be cell-type-specific. In this review, we discuss how chromosomal translocations are formed and explore how different cellular factors contribute to their formation.

16.
J Cell Physiol ; 237(8): 3328-3337, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35621301

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disease associated with ectopic expression of the DUX4 gene in skeletal muscle. Muscle degeneration in FSHD is accompanied by muscle tissue replacement with fat and connective tissue. Expression of DUX4 in myoblasts stimulates mesenchymal stem cells (MSC) migration via the CXCR4-CXCL12 axis. MSCs participate in adipose and connective tissue formation and can contribute to fibrosis. Here we studied the interaction between myoblasts and MSCs and the consequences of this interaction in the FSHD context. We used cell motility assays and coculture of MSCs with myoblasts to study their mutual effects on cell migration, differentiation, proliferation, and extracellular matrix formation. The growth medium conditioned by FSHD myoblasts stimulated MSCs migration 1.6-fold (p < 0.04) compared to nonconditioned medium. Blocking the CXCL12-CXCR4 axis with the CXCR4 inhibitor (AMD3100) or neutralizing antibodies to CXCL12 abolished this effect. FSHD myoblasts stimulated MSC proliferation 1.5-2 times (p < 0.05) compared to control myoblasts, while the presence of MSCs impaired myoblast differentiation. Under inflammatory conditions, medium conditioned by FSHD myoblasts stimulated collagen secretion by MSCs 2.2-fold as compared to the nonconditioned medium, p < 0.03. FSHD myoblasts attract MSCs via the CXCL12-CXCR4 axis, stimulate MSC proliferation and collagen secretion by MSCs. Interaction between MSCs and FSHD myoblasts accounts for several important aspects of FSHD pathophysiology. The CXCL12-CXCR4 axis may serve as a potential target to improve the state of the diseased muscles.


Asunto(s)
Células Madre Mesenquimatosas , Distrofia Muscular Facioescapulohumeral , Mioblastos , Movimiento Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Proteínas de Homeodominio/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos/metabolismo , Fenotipo , Receptores CXCR4/metabolismo
17.
Nucleic Acids Res ; 50(8): 4389-4413, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35474385

RESUMEN

Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.


Asunto(s)
Cromatina , Neoplasias Pulmonares , Humanos , Cromatina/genética , Epigenoma , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Heterocromatina , Fenotipo , Neoplasias Pulmonares/genética
18.
Cells ; 11(5)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269437

RESUMEN

Hepatocellular carcinoma (HCC) is a type of liver cancer with a poor prognosis for survival given the complications it bears on the patient. Though damages to the liver are acknowledged prodromic factors, the precise molecular aetiology remains ill-defined. However, many genes coding for proteins involved in calcium (Ca2+) homeostasis emerge as either mutated or deregulated. Ca2+ is a versatile signalling messenger that regulates functions that prime and drive oncogenesis, favouring metabolic reprogramming and gene expression. Ca2+ is present in cell compartments, between which it is trafficked through a network of transporters and exchangers, known as the Ca2+ transportome. The latter regulates and controls Ca2+ dynamics and tonicity. In HCC, the deregulation of the Ca2+ transportome contributes to tumorigenesis, the formation of metastasizing cells, and evasion of cell death. In this review, we reflect on these aspects by summarizing the current knowledge of the Ca2+ transportome and overviewing its composition in the plasma membrane, endoplasmic reticulum, and the mitochondria.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Calcio/metabolismo , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/patología , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias Hepáticas/patología
19.
J Virol ; 96(1): e0150521, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34613791

RESUMEN

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, reduces protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of nuclear localization signal (NLS) and nucleolar localization signal (NoLS) integration into the basic domain of HIV-1 Tat (49RKKRRQRRR57) and found that these two supplementary functions (i.e., function of NLS and function of NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , Señales de Localización Nuclear , Dominios y Motivos de Interacción de Proteínas , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Secuencia de Consenso , Evolución Molecular , Interacciones Huésped-Patógeno , Modelos Moleculares , Unión Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Proteínas Virales/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
20.
Redox Biol ; 43: 102008, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34030118

RESUMEN

Muscles of patients with facioscapulohumeral dystrophy (FSHD) are characterized by sporadic DUX4 expression and oxidative stress which is at least partially induced by DUX4 protein. Nevertheless, targeting oxidative stress with antioxidants has a limited impact on FSHD patients, and the exact role of oxidative stress in the pathology of FSHD, as well as its interplay with the DUX4 expression, remain unclear. Here we set up a screen for genes that are upregulated by DUX4 via oxidative stress with the aim to target these genes rather than the oxidative stress itself. Immortalized human myoblasts expressing DUX4 (MB135-DUX4) have an increased level of reactive oxygen species (ROS) and exhibit differentiation defects which can be reduced by treating the cells with classic (Tempol) or mitochondria-targeted antioxidants (SkQ1). The transcriptome analysis of antioxidant-treated MB135 and MB135-DUX4 myoblasts allowed us to identify 200 genes with expression deregulated by DUX4 but normalized upon antioxidant treatment. Several of these genes, including PITX1, have been already associated with FSHD and/or muscle differentiation. We confirmed that PITX1 was indeed deregulated in MB135-DUX4 cells and primary FSHD myoblasts and revealed a redox component in PITX1 regulation. PITX1 silencing partially reversed the differentiation defects of MB135-DUX4 myoblasts. Our approach can be used to identify and target redox-dependent genes involved in human diseases.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Humanos , Mioblastos/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...