Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113863, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457339

RESUMEN

Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the integrated stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor that instructs oogenesis. We demonstrate that Atf4 regulates lipase activity to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient-sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat-body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction-directly by impacting yolk lipoprotein production and follicle maturation and systemically by regulating ovulation.


Asunto(s)
Drosophila melanogaster , Oogénesis , Animales , Femenino , Drosophila melanogaster/fisiología , Oogénesis/fisiología , Ovulación , Oocitos , Lipoproteínas
3.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909541

RESUMEN

Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the Integrated Stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor which instructs oogenesis. We demonstrate that Atf4 regulates the lipase Brummer to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction: directly, by impacting yolk lipoprotein production and follicle maturation, and systemically, by regulating ovulation.

4.
PLoS Genet ; 19(1): e1010610, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696418

RESUMEN

Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.


Asunto(s)
Proteínas de Drosophila , Animales , Femenino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Células Germinativas/metabolismo , Drosophila/metabolismo , Diferenciación Celular/genética
6.
Methods Mol Biol ; 2378: 261-277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985706

RESUMEN

Wildtype or mutant proteins expressed beyond the capacity of a cell's protein folding system could be detrimental to general cellular function and survival. In response to misfolded protein overload in the endoplasmic reticulum (ER), eukaryotic cells activate the Unfolded Protein Response (UPR) that helps cells restore protein homeostasis in the endoplasmic reticulum (ER). As part of the UPR, cells attenuate general mRNA translation and activate transcription factors that induce stress-responsive gene expression.UPR signaling draws research interest in part because conditions that cause chronic protein misfolding in the ER or those that impair UPR signaling underlie several diseases including neurodegeneration, diabetes, and cancers. Model organisms are frequently employed in the field as the UPR pathways are generally well-conserved throughout phyla. Here, we introduce experimental procedures to detect UPR in Drosophila melanogaster.


Asunto(s)
Drosophila , Estrés del Retículo Endoplásmico , Animales , Drosophila melanogaster/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada
7.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919148

RESUMEN

Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the integrated stress response, an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap Minos-mediated integration cassette insertion in the crc locus generates a Crc-GFP fusion protein that allows visualization of Crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows Crc-GFP induction in a Drosophila model for retinitis pigmentosa. This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila , Degeneración Retiniana , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Alelos , Animales , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Oogénesis/genética , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo
8.
Elife ; 102021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34605405

RESUMEN

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2α to initiate the Unfolded Protein Response (UPR). eIF2α phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5' leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell-type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2α phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5' leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Glutatión Transferasa/metabolismo , Discos Imaginales/enzimología , eIF-2 Quinasa/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/genética , Discos Imaginales/embriología , Sistemas de Lectura Abierta , Fosforilación , Rodopsina/genética , Rodopsina/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
9.
Nat Commun ; 11(1): 4677, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938929

RESUMEN

The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5' leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5' leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estrés del Retículo Endoplásmico/genética , Factores Eucarióticos de Iniciación/genética , Biosíntesis de Proteínas , Factores de Transcripción/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Mutación , Sistemas de Lectura Abierta , Interferencia de ARN , Degeneración Retiniana/genética , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 295(46): 15742-15753, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32913123

RESUMEN

ADAMTSL2 mutations cause an autosomal recessive connective tissue disorder, geleophysic dysplasia 1 (GPHYSD1), which is characterized by short stature, small hands and feet, and cardiac defects. ADAMTSL2 is a matricellular protein previously shown to interact with latent transforming growth factor-ß binding protein 1 and influence assembly of fibrillin 1 microfibrils. ADAMTSL2 contains seven thrombospondin type-1 repeats (TSRs), six of which contain the consensus sequence for O-fucosylation by protein O-fucosyltransferase 2 (POFUT2). O-fucose-modified TSRs are subsequently elongated to a glucose ß1-3-fucose (GlcFuc) disaccharide by ß1,3-glucosyltransferase (B3GLCT). B3GLCT mutations cause Peters Plus Syndrome (PTRPLS), which is characterized by skeletal defects similar to GPHYSD1. Several ADAMTSL2 TSRs also have consensus sequences for C-mannosylation. Six reported GPHYSD1 mutations occur within the TSRs and two lie near O-fucosylation sites. To investigate the effects of TSR glycosylation on ADAMTSL2 function, we used MS to identify glycan modifications at predicted consensus sequences on mouse ADAMTSL2. We found that most TSRs were modified with the GlcFuc disaccharide at high stoichiometry at O-fucosylation sites and variable mannose stoichiometry at C-mannosylation sites. Loss of ADAMTSL2 secretion in POFUT2-/- but not in B3GLCT-/- cells suggested that impaired ADAMTSL2 secretion is not responsible for skeletal defects in PTRPLS patients. In contrast, secretion was significantly reduced for ADAMTSL2 carrying GPHYSD1 mutations (S641L in TSR3 and G817R in TSR6), and S641L eliminated O-fucosylation of TSR3. These results provide evidence that abnormalities in GPHYSD1 patients with this mutation are caused by loss of O-fucosylation on TSR3 and impaired ADAMTSL2 secretion.


Asunto(s)
Proteínas ADAMTS/metabolismo , Enfermedades del Desarrollo Óseo/patología , Proteínas de la Matriz Extracelular/metabolismo , Deformidades Congénitas de las Extremidades/patología , Proteínas ADAMTS/química , Proteínas ADAMTS/genética , Secuencia de Aminoácidos , Animales , Enfermedades del Desarrollo Óseo/genética , Sistemas CRISPR-Cas/genética , Disacáridos/química , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Fucosiltransferasas/deficiencia , Fucosiltransferasas/genética , Edición Génica , Glicosilación , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Células HEK293 , Humanos , Deformidades Congénitas de las Extremidades/genética , Manosa/química , Ratones , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
12.
Cell Rep ; 21(8): 2039-2047, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166596

RESUMEN

Bacterial infection often leads to suppression of mRNA translation, but hosts are nonetheless able to express immune response genes through as yet unknown mechanisms. Here, we use a Drosophila model to demonstrate that antimicrobial peptide (AMP) production during infection is paradoxically stimulated by the inhibitor of cap-dependent translation, 4E-BP (eIF4E-binding protein; encoded by the Thor gene). We found that 4E-BP is induced upon infection with pathogenic bacteria by the stress-response transcription factor ATF4 and its upstream kinase, GCN2. Loss of gcn2, atf4, or 4e-bp compromised immunity. While AMP transcription is unaffected in 4e-bp mutants, AMP protein levels are substantially reduced. The 5' UTRs of AMPs score positive in cap-independent translation assays, and this cap-independent activity is enhanced by 4E-BP. These results are corroborated in vivo using transgenic 5' UTR reporters. These observations indicate that ATF4-induced 4e-bp contributes to innate immunity by biasing mRNA translation toward cap-independent mechanisms, thus enhancing AMP synthesis.


Asunto(s)
Factor de Transcripción Activador 4/genética , Antiinfecciosos/farmacología , Proteínas de Drosophila/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Quinasas/metabolismo , Animales , Infecciones Bacterianas/genética , Proteínas Portadoras/metabolismo , Drosophila , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/genética , Factor 4E Eucariótico de Iniciación/genética , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación/fisiología , Unión Proteica/genética , Biosíntesis de Proteínas/fisiología , Proteínas Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
13.
BMB Rep ; 50(11): 539-545, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28803610

RESUMEN

The Integrated Stress Response (ISR) refers to a signaling pathway initiated by stress-activated eIF2α kinases. Once activated, the pathway causes attenuation of global mRNA translation while also paradoxically inducing stress response gene expression. A detailed analysis of this pathway has helped us better understand how stressed cells coordinate gene expression at translational and transcriptional levels. The translational attenuation associated with this pathway has been largely attributed to the phosphorylation of the translational initiation factor eIF2α. However, independent studies are now pointing to a second translational regulation step involving a downstream ISR target, 4E-BP, in the inhibition of eIF4E and specifically cap-dependent translation. The activation of 4E-BP is consistent with previous reports implicating the roles of 4E-BP resistant, Internal Ribosome Entry Site (IRES) dependent translation in ISR active cells. In this review, we provide an overview of the translation inhibition mechanisms engaged by the ISR and how they impact the translation of stress response genes. [BMB Reports 2017; 50(11): 539-545].


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Estrés Fisiológico/fisiología , Animales , Factor 2 Eucariótico de Iniciación/fisiología , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Fosforilación , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Estrés Fisiológico/genética
14.
J Cell Biol ; 216(1): 115-129, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27979906

RESUMEN

Reduced amino acid availability attenuates mRNA translation in cells and helps to extend lifespan in model organisms. The amino acid deprivation-activated kinase GCN2 mediates this response in part by phosphorylating eIF2α. In addition, the cap-dependent translational inhibitor 4E-BP is transcriptionally induced to extend lifespan in Drosophila melanogaster, but through an unclear mechanism. Here, we show that GCN2 and its downstream transcription factor, ATF4, mediate 4E-BP induction, and GCN2 is required for lifespan extension in response to dietary restriction of amino acids. The 4E-BP intron contains ATF4-binding sites that not only respond to stress but also show inherent ATF4 activity during normal development. Analysis of the newly synthesized proteome through metabolic labeling combined with click chemistry shows that certain stress-responsive proteins are resistant to inhibition by 4E-BP, and gcn2 mutant flies have reduced levels of stress-responsive protein synthesis. These results indicate that GCN2 and ATF4 are important regulators of 4E-BP transcription during normal development and aging.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Envejecimiento/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Factor de Transcripción Activador 4/genética , Envejecimiento/genética , Aminoácidos/deficiencia , Animales , Sitios de Unión , Línea Celular , Química Clic , Dieta con Restricción de Proteínas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Estrés del Retículo Endoplásmico , Genotipo , Péptidos y Proteínas de Señalización Intracelular/genética , Intrones , Longevidad , Mutación , Factores de Iniciación de Péptidos/genética , Fenotipo , Proteínas Quinasas/genética , Proteoma , Proteómica/métodos , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Transfección , Regulación hacia Arriba , eIF-2 Quinasa/metabolismo
15.
Sci Rep ; 6: 33974, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27687499

RESUMEN

Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseß1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseß1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.

16.
Methods Mol Biol ; 1419: 131-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27108437

RESUMEN

Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants, and assays used by various laboratories to study cell death in the context of development and in response to external insults.


Asunto(s)
Apoptosis , Drosophila/citología , Animales , Caspasas/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Ojo/metabolismo , Regulación de la Expresión Génica
17.
Nat Chem Biol ; 12(4): 240-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26854667

RESUMEN

Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Fucosiltransferasas/química , Proteínas Recombinantes de Fusión/química , Trombospondina 1/química , Agua/química , Secuencia de Bases , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Transfección
18.
Curr Top Dev Biol ; 114: 185-208, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26431568

RESUMEN

Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Muerte Celular , Proteínas Inhibidoras de la Apoptosis/fisiología , Animales , Apoptosis/fisiología , Movimiento Celular , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/fisiología , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/metabolismo , Morfogénesis , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo
19.
Curr Biol ; 25(3): 286-295, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25544610

RESUMEN

BACKGROUND: O-fucose is added to cysteine-rich domains called thrombospondin type 1 repeats (TSRs) by protein O-fucosyltransferase 2 (POFUT2) and is elongated with glucose by ß3-glucosyltransferase (B3GLCT). Mutations in B3GLCT result in Peters plus syndrome (PPS), an autosomal recessive disorder characterized by eye and other developmental defects. Although 49 putative targets are known, the function of the disaccharide and its role in PPS remain unexplored. RESULTS: Here we show that while POFUT2 is required for secretion of all targets tested, B3GLCT only affects the secretion of a subset, consistent with the observation that B3GLCT mutant phenotypes in PPS patients are less severe than embryonic lethal phenotypes of Pofut2-null mice. O-glycosylation occurs cotranslationally, as TSRs fold. Mass spectral analysis reveals that TSRs from mature, secreted protein are stoichiometrically modified with the disaccharide, whereas TSRs from protein still folding in the ER are partially modified, suggesting that O-glycosylation marks folded TSRs and promotes ER exit. In vitro unfolding assays demonstrate that fucose and glucose stabilize folded TSRs in an additive manner. In vitro refolding assays under redox conditions showed that POFUT2 recognizes, glycosylates, and stabilizes the folded form of TSRs, resulting in a net acceleration of folding. CONCLUSIONS: While known ER quality-control machinery rely on identifying and tagging unfolded proteins, we find that POFUT2 and B3GLCT mediate a noncanonical ER quality-control mechanism that recognizes folded TSRs and stabilizes them by glycosylation. Our findings provide a molecular basis for the defects observed in PPS and potential targets that contribute to the pathology.


Asunto(s)
Labio Leporino/genética , Córnea/anomalías , Retículo Endoplásmico/genética , Fucosiltransferasas/metabolismo , Galactosiltransferasas/metabolismo , Glucosiltransferasas/metabolismo , Trastornos del Crecimiento/genética , Deformidades Congénitas de las Extremidades/genética , Western Blotting , Labio Leporino/metabolismo , Córnea/metabolismo , Retículo Endoplásmico/fisiología , Fucosa/metabolismo , Galactosiltransferasas/genética , Glucosa/metabolismo , Glucosiltransferasas/genética , Trastornos del Crecimiento/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Deformidades Congénitas de las Extremidades/metabolismo , Modelos Biológicos , Mutación/genética , Oxidación-Reducción , Pliegue de Proteína , ARN Interferente Pequeño/genética , Trombospondina 1/metabolismo
20.
Glycoconj J ; 31(6-7): 417-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25186198

RESUMEN

N-Glycosylation has long been linked to protein folding and quality control in the endoplasmic reticulum (ER). Recent work has shown that O-linked glycosylation and the corresponding glycosyltransferases also participate in this important function. Notably, Protein O-fucosyltransferase 1 (Ofut1/Pofut1), a soluble, ER localized enzyme that fucosylates Epidermal Growth Factor-like (EGF) repeats, functions as a chaperone involved in the proper localization of the Notch receptor in certain contexts. Pofut2, a related enzyme that modifies Thrombospondin type I repeats (TSRs), has also been hypothesized to play a role in the folding and quality control of TSR-containing proteins. Both enzymes only modify fully folded substrates suggesting that they are able to distinguish between folded and unfolded structures. Pofuts have known physiological relevance and are conserved across metazoans. Though consensus sequences for O-fucosylation have been established and structures of both Pofuts have been studied, the mechanism of how they participate in protein folding is not known. This article discusses past and recent advances made in novel roles for these protein O-glycosyltransferases.


Asunto(s)
Polisacáridos/química , Proteínas/química , Animales , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...