Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 247: 109859, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340956

RESUMEN

Caloric restriction (CR) is proposed as a strategy to prevent age-related alterations like impaired glucose metabolism and intensification of oxidative stress. In this study, we examined effects of aging and CR on the activities of glycolytic enzymes and parameters of oxidative stress in the cerebral cortex, liver, and kidney of middle-aged (9 months old) and old (18 months old) C57BL6/N mice. Control middle-aged and old mice were fed ad libitum (AL groups), whereas age-matched CR groups were subjected to CR (70% of individual ad libitum food intake) for 6 and 12 months, respectively. There were no significant differences in the activities of key glycolytic and antioxidant enzymes and oxidative stress indices between the cortices of middle-aged and old AL mice. The livers and kidneys of old AL mice showed higher activity of glucose-6-phosphate dehydrogenase, an enzyme that produces NADPH in the pentose phosphate pathway, compared to those of middle-aged mice. CR regimen modulated some biochemical parameters in middle-aged but not in old mice. In particular, CR decreased oxidative stress intensity in the liver and kidney but had no effects on those parameters in the cerebral cortex. In the liver, CR led to lower activities of glycolytic enzymes, whereas its effect was the opposite in the kidney. The results suggest that during physiological aging there is no significant intensification of oxidative stress and glycolysis decline in mouse tissues during the transition from middle to old age. The CR regimen has tissue-specific effects and improves the metabolic state of middle-aged mice. This article is part of the Special Issue on "Ukrainian Neuroscience".


Asunto(s)
Restricción Calórica , Estrés Oxidativo , Ratones , Animales , Restricción Calórica/métodos , Estrés Oxidativo/fisiología , Envejecimiento/metabolismo , Hígado/metabolismo , Riñón , Glucólisis , Corteza Cerebral
2.
Biochim Biophys Acta Gen Subj ; 1868(1): 130521, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967727

RESUMEN

BACKGROUND: High caloric diets with high amounts of fats and sweeteners such as fructose may predispose organisms to neurodegenerative diseases. METHODS: This study aimed to examine the effects of a high-fat high-fructose diet (HFFD) on the behavior of mice, energy metabolism, and markers of oxidative stress in murine cerebral cortex. Dietary α-ketoglutarate (AKG) was chosen as a treatment which could modulate the putative effects of HFFD. RESULTS: We found that HFFD stimulated locomotion and defecation in mice, whereas an AKG-supplemented diet had a proclivity to promote anxiety-like behavior. HFFD stimulated lipid peroxidation, and in turn, the AKG-supplemented diet led to a higher ratio of reduced to oxidized glutathione, higher activity of NAD(P)H:quinone oxidoreductase 1, and higher mRNA levels of UDP-glucose 6-dehydrogenase and transcription factor EB. Both diets separately, but not in combination, led to a decrease in the activities of glutathione peroxidase, glutathione S-transferase, and phosphofructokinase. All experimental diets resulted in lower levels of transcripts of genes encoding pyruvate dehydrogenase kinase 4 (PDK4), glycine N-methyl transferase, and peroxisome proliferator receptor γ co-activator 1. CONCLUSIONS: Our results show that diet supplemented with AKG resulted in effects similar to those of HFFD on the cerebral cortex, but elicited substantial differences between these two diets with respect to behavior, glutathione-dependent detoxification, and processes related to autophagy. GENERAL SIGNIFICANCE: Our study provides insight into the metabolic effects of HFFD alone and in combination with alpha-ketoglutarate in the mouse brain.


Asunto(s)
Fructosa , Ácidos Cetoglutáricos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo , Metabolismo Energético
3.
EXCLI J ; 22: 1264-1277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234967

RESUMEN

Consumption of high-calorie diets leads to excessive accumulation of storage lipids in adipose tissue. Metabolic changes occur not only in adipose tissue but in other tissues, too, such as liver, heart, muscle, and brain. This study aimed to explore the effects of high-fat high-fructose diet (HFFD) alone and in the combination with alpha-ketoglutarate (AKG), a well-known cellular metabolite, on energy metabolism in the skeletal muscle of C57BL/6J mice. Five-month-old male mice were divided into four groups - the control one fed a standard diet (10 % kcal fat), HFFD group fed a high-fat high-fructose diet (45 % kcal fat, 15 % kcal fructose), AKG group fed a standard diet with 1 % sodium AKG in drinking water, and HFFD + AKG group fed HFFD and water with 1 % sodium AKG. The dietary regimens lasted 8 weeks. Mice fed HFFD had higher levels of storage triacylglycerides, lower levels of glycogen, and total water-soluble protein, and higher activities of key glycolytic enzymes, namely hexokinase, phosphofructokinase, and pyruvate kinase, as compared with the control group. The results suggest that muscles of HFFD mice may suffer from lipotoxicity. In HFFD + AKG mice, levels of the metabolites and activities of glycolytic enzymes did not differ from the respective values in the control group, except for the activity of pyruvate kinase, which was significantly lower in HFFD + AKG group compared with the control. Thus, metabolic changes in mouse skeletal muscles, caused by HFFD, were alleviated by AKG, indicating a protective role of AKG regarding lipotoxicity.

4.
Biogerontology ; 23(5): 559-570, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35915171

RESUMEN

Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.


Asunto(s)
Ayuno , Longevidad , Envejecimiento , Fosfatasa Alcalina , Animales , Colesterol , Femenino , Lactatos , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Biochim Biophys Acta Gen Subj ; 1866(12): 130226, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35987369

RESUMEN

BACKGROUND: Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes. METHODS: Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks. RESULTS: The HFFD had no effect on body mass but activated fructolysis and glycolysis and induced inflammation and oxidative stress with a concomitant increase in activity of antioxidant enzymes in the mouse liver. HFFD-fed mice also showed lower mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and slightly increased intensity of mitochondrial respiration in liver compared to mice on the standard diet. No significant effects of HFFD on transcription of PDK2 and PGC1α, a peroxisome proliferator-activated receptor co-activator-1α, or protein levels of p-AMPK, an active form of AMP-activated protein kinase, were found. The addition of AKG to HFFD decreased oxidized glutathione levels, did not affect levels of lipid peroxides and PDK4 transcripts but increased activities of hexokinase and phosphofructokinase in mouse liver. CONCLUSIONS: Supplementation with AKG had weak modulating effects on HFFD-induced oxidative stress and changes in energetics in mouse liver. GENERAL SIGNIFICANCE: Our research expands the understanding of diet-induced metabolic switching and elucidates further roles of alpha-ketoglutarate as a metabolic regulator.


Asunto(s)
Fructosa , Ácidos Cetoglutáricos , Masculino , Ratones , Animales , Fructosa/efectos adversos , Fructosa/metabolismo , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo , Hígado/metabolismo
6.
Biomed Res Int ; 2022: 5850507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782067

RESUMEN

Overweight and obesity are health conditions tightly related to a number of metabolic complications collectively called "metabolic syndrome" (MetS). Clinical diagnosis of MetS includes the presence of the increased waist circumference or so-called abdominal obesity, reduced high density lipoprotein level, elevated blood pressure, and increased blood glucose and triacylglyceride levels. Different approaches, including diet-induced and genetically induced animal models, have been developed to study MetS pathogenesis and underlying mechanisms. Studies of metabolic disturbances in the fruit fly Drosophila and mammalian models along with humans have demonstrated that fruit flies and small mammalian models like rats and mice have many similarities with humans in basic metabolic functions and share many molecular mechanisms which regulate these metabolic processes. In this paper, we describe diet-induced, chemically and genetically induced animal models of the MetS. The advantages and limitations of rodent and Drosophila models of MetS and obesity are also analyzed.


Asunto(s)
Síndrome Metabólico , Roedores , Animales , Drosophila , Ratones , Obesidad , Ratas , Factores de Riesgo
7.
Oncoimmunology ; 10(1): 1874159, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33628620

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a very poor prognosis and constantly growing incidence. Among other primary risks of HCC, metabolic disorders and obesity have been extensively investigated over recent decades. The latter can promote nonalcoholic fatty liver disease (NAFLD) leading to the inflammatory form of nonalcoholic steatohepatitis (NASH), that, in turn, promotes HCC. Molecular determinants of this pathogenic progression, however, remain largely undefined. In this study, we have focussed on the investigation of α-dicarbonyl compounds (α-dC), highly reactive and tightly associated with overweight-induced metabolic disorders, and studied their potential role in NAFLD and progression toward HCC using murine models. NAFLD was induced using high-fat diet (HFD). Autochthonous HCC was induced using transposon-based stable intrahepatic overexpression of oncogenic NRASG12V in mice lacking p19Arf tumor suppressor. Our study demonstrates that the HFD regimen and HCC resulted in strong upregulation of α-dC in the liver, heart, and muscles. In addition, an increase in α-dC was confirmed in sera of NAFLD and NASH patients. Furthermore, higher expression of the receptor for advanced glycation products (RAGE) was detected exclusively on immune cells and not on stroma cells in livers of mice with liver cancer progression. Our work confirms astable interplay of liver inflammation, carbonyl stress mediated by α-dC, and upregulated RAGE expression on CD8+ Tand natural killer (NK) cells in situ in NAFLD and HCC, as key factors/determinants in liver disease progression. The obtained findings underline the role of α-dC and RAGE+CD8+ Tand RAGE+ NK cells as biomarkers and candidates for a local therapeutic intervention in NAFLD and malignant liver disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular/etiología , Progresión de la Enfermedad , Productos Finales de Glicación Avanzada , Humanos , Ratones , Receptor para Productos Finales de Glicación Avanzada/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...