Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Protoc ; 19(4): 1122-1148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263522

RESUMEN

Recent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. Although 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol focuses on the use of a fluorescent analog of hematoxylin and eosin, which remains the most common stain used for gold-standard pathological reports. We present our guidelines for a broad range of end users (e.g., biologists, clinical researchers and engineers) in a simple format. The end-to-end workflow requires 3-6 d to complete, bearing in mind that data analysis may take longer.


Asunto(s)
Imagenología Tridimensional , Microscopía , Imagenología Tridimensional/métodos , Flujo de Trabajo , Microscopía/métodos , Colorantes , Coloración y Etiquetado
2.
bioRxiv ; 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577615

RESUMEN

Recent advances in 3D pathology offer the ability to image orders-of-magnitude more tissue than conventional pathology while providing a volumetric context that is lacking with 2D tissue sections, all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis is non-trivial, requiring careful attention to many details regarding tissue preparation, imaging, and data/image processing in an iterative process. Here we provide an end-to-end protocol covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. While 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol will focus on a fluorescent analog of hematoxylin and eosin (H&E), which remains the most common stain for gold-standard diagnostic determinations. We present our guidelines for a broad range of end-users (e.g., biologists, clinical researchers, and engineers) in a simple tutorial format.

3.
Aging (Albany NY) ; 15(14): 6658-6689, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37487005

RESUMEN

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.


Asunto(s)
Podocitos , Humanos , Animales , Ratones , Persona de Mediana Edad , Podocitos/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Glomérulos Renales/metabolismo , Envejecimiento
4.
J Phys Chem B ; 127(12): 2701-2707, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36944080

RESUMEN

Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique dSTORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by dSTORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by dSTORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Imagen Individual de Molécula , Vesículas Extracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Imagen Individual de Molécula/métodos
5.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 231-252, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-36854208

RESUMEN

In recent years, there has been a revived appreciation for the importance of spatial context and morphological phenotypes for both understanding disease progression and guiding treatment decisions. Compared with conventional 2D histopathology, which is the current gold standard of medical diagnostics, nondestructive 3D pathology offers researchers and clinicians the ability to visualize orders of magnitude more tissue within their natural volumetric context. This has been enabled by rapid advances in tissue-preparation methods, high-throughput 3D microscopy instrumentation, and computational tools for processing these massive feature-rich data sets. Here, we provide a brief overview of many of these technical advances along with remaining challenges to be overcome. We also speculate on the future of 3D pathology as applied in translational investigations, preclinical drug development, and clinical decision-support assays.


Asunto(s)
Investigación Biomédica Traslacional , Ciencia Traslacional Biomédica , Humanos , Microscopía Fluorescente , Bioensayo , Progresión de la Enfermedad
6.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35968783

RESUMEN

With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2). PDCD1 transcript increased with age in microdissected human glomeruli, which correlated with lower estimated glomerular filtration rate and higher segmental glomerulosclerosis and vascular arterial intima-to-lumen ratio. In vitro studies in podocytes demonstrated a critical role for PD-1 signaling in cell survival and in the induction of a senescence-associated secretory phenotype. To prove PD-1 signaling was critical to podocyte aging, aged mice were injected with anti-PD-1 antibody. Treatment significantly improved the aging phenotype in both kidney and liver. In the glomerulus, it increased the life span of podocytes, but not that of parietal epithelial, mesangial, or endothelial cells. Transcriptomic and immunohistochemistry studies demonstrated that anti-PD-1 antibody treatment improved the health span of podocytes. Administering the same anti-PD-1 antibody to young mice with experimental focal segmental glomerulosclerosis (FSGS) lowered proteinuria and improved podocyte number. These results suggest a critical contribution of increased PD-1 signaling toward both kidney and liver aging and in FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Anciano , Animales , Células Endoteliales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Glomérulos Renales/metabolismo , Ratones , Podocitos/metabolismo , Transducción de Señal
7.
PLoS Pathog ; 18(4): e1010496, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35482847

RESUMEN

Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 µm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.


Asunto(s)
Giardia lamblia , Giardiasis , Parásitos , Actinas/metabolismo , Animales , Giardia/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Giardiasis/parasitología , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
Biomed Opt Express ; 13(2): 1102-1120, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284165

RESUMEN

Confocal microscopy is an invaluable tool for 3D imaging of biological specimens, however, accessibility is often limited to core facilities due to the high cost of the hardware. We describe an inexpensive do-it-yourself (DIY) spinning disk confocal microscope (SDCM) module based on a commercially fabricated chromium photomask that can be added on to a laser-illuminated epifluorescence microscope. The SDCM achieves strong performance across a wide wavelength range (∼400-800 nm) as demonstrated through a series of biological imaging applications that include conventional microscopy (immunofluorescence, small-molecule stains, and fluorescence in situ hybridization) and super-resolution microscopy (single-molecule localization microscopy and expansion microscopy). This low-cost and simple DIY SDCM is well-documented and should help increase accessibility to confocal microscopy for researchers.

9.
J Biomed Opt ; 27(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35315258

RESUMEN

SIGNIFICANCE: For breast cancer patients, the extent of regional lymph node (LN) metastasis influences the decision to remove all axillary LNs. Metastases are currently identified and classified with visual analysis of a few thin tissue sections with conventional histology that may underrepresent the extent of metastases. AIM: We sought to enable nondestructive three-dimensional (3D) pathology of human axillary LNs and to develop a practical workflow for LN staging with our method. We also sought to evaluate whether 3D pathology improves staging accuracy in comparison to two-dimensional (2D) histology. APPROACH: We developed a method to fluorescently stain and optically clear LN specimens for comprehensive imaging with multiresolution open-top light-sheet microscopy. We present an efficient imaging and data-processing workflow for rapid evaluation of H&E-like datasets in 3D, with low-resolution screening to identify potential metastases followed by high-resolution localized imaging to confirm malignancy. RESULTS: We simulate LN staging with 3D and 2D pathology datasets from 10 metastatic nodes, showing that 2D pathology consistently underestimates metastasis size, including instances in which 3D pathology would lead to upstaging of the metastasis with important implications on clinical treatment. CONCLUSIONS: Our 3D pathology method may improve clinical management for breast cancer patients by improving staging accuracy of LN metastases.


Asunto(s)
Neoplasias de la Mama , Axila/patología , Neoplasias de la Mama/patología , Femenino , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Metástasis Linfática/diagnóstico por imagen , Estadificación de Neoplasias
10.
Nat Protoc ; 17(3): 819-846, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35110740

RESUMEN

Fluorescence microscopy is a vital tool in biomedical research but faces considerable challenges in achieving uniform or bright labeling. For instance, fluorescent proteins are limited to model organisms, and antibody conjugates can be inconsistent and difficult to use with thick specimens. To partly address these challenges, we developed a labeling protocol that can rapidly visualize many well-contrasted key features and landmarks on biological specimens in both thin and thick tissues or cultured cells. This approach uses established reactive fluorophores to label a variety of biological specimens for cleared-tissue microscopy or expansion super-resolution microscopy and is termed FLARE (fluorescent labeling of abundant reactive entities). These fluorophores target chemical groups and reveal their distribution on the specimens; amine-reactive fluorophores such as hydroxysuccinimidyl esters target accessible amines on proteins, while hydrazide fluorophores target oxidized carbohydrates. The resulting stains provide signals analogous to traditional general histology stains such as H&E or periodic acid-Schiff but use fluorescent probes that are compatible with volumetric imaging. In general, the stains for FLARE are performed in the order of carbohydrates, amine and DNA, and the incubation time for the stains varies from 1 h to 1 d depending on the combination of stains and the type and thickness of the biological specimens. FLARE is powerful, robust and easy to implement in laboratories that already routinely do fluorescence microscopy.


Asunto(s)
ADN , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Proteínas , Coloración y Etiquetado
11.
Cancer Res ; 82(2): 334-345, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34853071

RESUMEN

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/epidemiología , Anciano , Biopsia con Aguja Gruesa , Estudios de Cohortes , Humanos , Masculino , Persona de Mediana Edad , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Medición de Riesgo , Coloración y Etiquetado
12.
J Am Soc Nephrol ; 32(11): 2697-2713, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716239

RESUMEN

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.


Asunto(s)
Envejecimiento/fisiología , Podocitos/citología , Adulto , Anciano , Animales , Autofagia , Restricción Calórica , Ciclo Celular , Forma de la Célula , Células Cultivadas , Senescencia Celular , Daño del ADN , Femenino , Expresión Génica , Humanos , Inflamasomas , Glomérulos Renales/citología , Glomérulos Renales/crecimiento & desarrollo , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Animales , Oligopéptidos/farmacología , Estrés Oxidativo , Podocitos/metabolismo , Ratas , Muerte Celular Regulada , Sirtuinas/metabolismo , Especificidad de la Especie , Adulto Joven
13.
Nucleic Acids Res ; 49(14): e82, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34048564

RESUMEN

Proper regulation of genome architecture and activity is essential for the development and function of multicellular organisms. Histone modifications, acting in combination, specify these activity states at individual genomic loci. However, the methods used to study these modifications often require either a large number of cells or are limited to targeting one histone mark at a time. Here, we developed a new method called Single Cell Evaluation of Post-TRanslational Epigenetic Encoding (SCEPTRE) that uses Expansion Microscopy (ExM) to visualize and quantify multiple histone modifications at non-repetitive genomic regions in single cells at a spatial resolution of ∼75 nm. Using SCEPTRE, we distinguished multiple histone modifications at a single housekeeping gene, quantified histone modification levels at multiple developmentally-regulated genes in individual cells, and evaluated the relationship between histone modifications and RNA polymerase II loading at individual loci. We find extensive variability in epigenetic states between individual gene loci hidden from current population-averaged measurements. These findings establish SCEPTRE as a new technique for multiplexed detection of combinatorial chromatin states at single genomic loci in single cells.


Asunto(s)
Cromatina/metabolismo , Genoma Humano/genética , Histonas/metabolismo , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Análisis de la Célula Individual/métodos , Línea Celular , Cromatina/genética , Epigénesis Genética/genética , Código de Histonas/genética , Humanos , Hibridación Fluorescente in Situ/métodos , Cadenas Ligeras de Miosina/genética
14.
Cell Rep ; 34(12): 108888, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761349

RESUMEN

During development, progenitors often differentiate many cell generations after receiving signals. These delays must be robust yet tunable for precise population size control. Polycomb repressive mechanisms, involving histone H3 lysine-27 trimethylation (H3K27me3), restrain the expression of lineage-specifying genes in progenitors and may delay their activation and ensuing differentiation. Here, we elucidate an epigenetic switch controlling the T cell commitment gene Bcl11b that holds its locus in a heritable inactive state for multiple cell generations before activation. Integrating experiments and modeling, we identify a mechanism where H3K27me3 levels at Bcl11b, regulated by methyltransferase and demethylase activities, set the time delay at which the locus switches from a compacted, silent state to an extended, active state. This activation delay robustly spans many cell generations, is tunable by chromatin modifiers and transcription factors, and is independent of cell division. With their regulatory flexibility, such timed epigenetic switches may broadly control timing in development.


Asunto(s)
División Celular/genética , Proteínas del Grupo Polycomb/metabolismo , Activación Transcripcional/genética , Animales , Linaje de la Célula/genética , Epigénesis Genética , Sitios Genéticos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Ratones Endogámicos C57BL , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Linfocitos T/citología , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo
15.
Nat Commun ; 12(1): 856, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558528

RESUMEN

Through the efforts of many groups, a wide range of fluorescent protein reporters and sensors based on green fluorescent protein and its relatives have been engineered in recent years. Here we explore the incorporation of sensing modalities into de novo designed fluorescence-activating proteins, called mini-fluorescence-activating proteins (mFAPs), that bind and stabilize the fluorescent cis-planar state of the fluorogenic compound DFHBI. We show through further design that the fluorescence intensity and specificity of mFAPs for different chromophores can be tuned, and the fluorescence made sensitive to pH and Ca2+ for real-time fluorescence reporting. Bipartite split mFAPs enable real-time monitoring of protein-protein association and (unlike widely used split GFP reporter systems) are fully reversible, allowing direct readout of association and dissociation events. The relative ease with which sensing modalities can be incorporated and advantages in smaller size and photostability make de novo designed fluorescence-activating proteins attractive candidates for optical sensor engineering.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Acetilcolina/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Fluorescencia , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/química , Modelos Moleculares
16.
Sci Adv ; 6(22): eaba4542, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32518827

RESUMEN

Fluorescence microscopy is a workhorse tool in biomedical imaging but often poses substantial challenges to practitioners in achieving bright or uniform labeling. In addition, while antibodies are effective specific labels, their reproducibility is often inconsistent, and they are difficult to use when staining thick specimens. We report the use of conventional, commercially available fluorescent dyes for rapid and intense covalent labeling of proteins and carbohydrates in super-resolution (expansion) microscopy and cleared tissue microscopy. This approach, which we refer to as Fluorescent Labeling of Abundant Reactive Entities (FLARE), produces simple and robust stains that are modern equivalents of classic small-molecule histology stains. It efficiently reveals a wealth of key landmarks in cells and tissues under different fixation or sample processing conditions and is compatible with immunolabeling of proteins and in situ hybridization labeling of nucleic acids.

17.
Nat Commun ; 10(1): 2781, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273194

RESUMEN

Recent advances in optical clearing and light-sheet microscopy have provided unprecedented access to structural and molecular information from intact tissues. However, current light-sheet microscopes have imposed constraints on the size, shape, number of specimens, and compatibility with various clearing protocols. Here we present a multi-immersion open-top light-sheet microscope that enables simple mounting of multiple specimens processed with a variety of clearing protocols, which will facilitate wide adoption by preclinical researchers and clinical laboratories. In particular, the open-top geometry provides unsurpassed versatility to interface with a wide range of accessory technologies in the future.


Asunto(s)
Microscopía Fluorescente/métodos , Animales , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Ganglios Linfáticos/diagnóstico por imagen , Masculino , Ratones , Microscopía Fluorescente/instrumentación , Próstata/diagnóstico por imagen
18.
Kidney Int ; 96(3): 597-611, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31200942

RESUMEN

Podocytes are differentiated post-mitotic cells that cannot replace themselves after injury. Glomerular parietal epithelial cells are proposed to be podocyte progenitors. To test whether a subset of parietal epithelial cells transdifferentiate to a podocyte fate, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice, named PEC-PODO, were generated. Doxycycline administration permanently labeled parietal epithelial cells with tdTomato reporter (red), and upon doxycycline removal, the parietal epithelial cells (PECs) cannot label further. Despite the presence or absence of doxycycline, podocytes cannot label with tdTomato, but are constitutively labeled with an enhanced green fluorescent protein (EGFP) reporter (green). Only activation of the Nphs1-FLPo transgene by labeled parietal epithelial cells can generate a yellow color. At day 28 of experimental focal segmental glomerulosclerosis, podocyte density was 20% lower in 20% of glomeruli. At day 56 of experimental focal segmental glomerulosclerosis, podocyte density was 18% lower in 17% of glomeruli. TdTomato+ parietal epithelial cells were restricted to Bowman's capsule in healthy mice. However, by days 28 and 56 of experimental disease, two-thirds of tdTomato+ parietal epithelial cells within glomerular tufts were yellow in color. These cells co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of endothelial (ERG) or mesangial (Perlecan) cells. Expansion microscopy showed primary, secondary and minor processes in tdTomato+EGFP+ cells in glomerular tufts. Thus, our studies provide strong evidence that parietal epithelial cells serve as a source of new podocytes in adult mice.


Asunto(s)
Transdiferenciación Celular , Células Epiteliales/fisiología , Glomeruloesclerosis Focal y Segmentaria/patología , Podocitos/fisiología , Animales , Modelos Animales de Enfermedad , Genes Reporteros/genética , Glomeruloesclerosis Focal y Segmentaria/terapia , Humanos , Microscopía Intravital , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteína Fluorescente Roja
19.
Biomed Opt Express ; 10(3): 1257-1272, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30891344

RESUMEN

Open-top light-sheet microscopy is a technique that can potentially enable rapid ex vivo inspection of large tissue surfaces and volumes. Here, we have optimized an open-top light-sheet (OTLS) microscope and image-processing workflow for the comprehensive examination of surgical margin surfaces, and have also developed a novel fluorescent analog of H&E staining that is robust for staining fresh unfixed tissues. Our tissue-staining method can be achieved within 2.5 minutes followed by OTLS microscopy of lumpectomy surfaces at a rate of up to 1.5 cm2/minute. An image atlas is presented to show that OTLS image quality surpasses that of intraoperative frozen sectioning and can approximate that of gold-standard H&E histology of formalin-fixed paraffin-embedded (FFPE) tissues. Qualitative evidence indicates that these intraoperative methods do not interfere with downstream post-operative H&E histology and immunohistochemistry. These results should facilitate the translation of OTLS microscopy for intraoperative guidance of lumpectomy and other surgical oncology procedures.

20.
Elife ; 82019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30855229

RESUMEN

Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons.


Asunto(s)
Epidermis/anatomía & histología , Epidermis/crecimiento & desarrollo , Morfogénesis , Nociceptores/citología , Nociceptores/fisiología , Animales , Drosophila , Células Epidérmicas/citología , Células Epidérmicas/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...