Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Wetlands (Wilmington) ; 43(6): 57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360757

RESUMEN

The use of loss on ignition (LOI) measurements of soil organic matter (SOM) to estimate soil organic carbon (OC) content is a decades-old practice. While there are limitations and uncertainties to this approach, it continues to be necessary for many coastal wetlands researchers and conservation practitioners without access to an elemental analyzer. Multiple measurement, reporting, and verification (MRV) standards recognize the need (and uncertainty) for using this method. However, no framework exists to explain the substantial differences among equations that relate SOM to OC; consequently, equation selection can be a haphazard process leading to widely divergent and inaccurate estimates. To address this lack of clarity, we used a dataset of 1,246 soil samples from 17 mangrove regions in North, Central, and South America, and calculated SOM to OC conversion equations for six unique types of coastal environmental setting. A framework is provided for understanding differences and selecting an equation based on a study region's SOM content and whether mineral sediments are primarily terrigenous or carbonate in origin. This approach identifies the positive dependence of conversion equation slopes on regional mean SOM content and indicates a distinction between carbonate settings with mean (± 1 S.E.) OC:SOM of 0.47 (0.002) and terrigenous settings with mean OC:SOM of 0.32 (0.018). This framework, focusing on unique coastal environmental settings, is a reminder of the global variability in mangrove soil OC content and encourages continued investigation of broadscale factors that contribute to soil formation and change in blue carbon settings. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01698-z.

2.
Water Res ; 229: 119357, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455459

RESUMEN

Anthropogenic conversion of forests and wetlands to agricultural and urban landcovers impacts dissolved organic matter (DOM) within streams draining these catchments. Research on how landcover conversion impacts DOM molecular level composition and bioavailability, however, is lacking. In the Upper Mississippi River Basin (UMRB), water from low-order streams and rivers draining one of three dominant landcovers (forest, agriculture, urban) was incubated for 28 days to determine bioavailable DOC (BDOC) concentrations and changes in DOM composition. The BDOC concentration averaged 0.49 ± 0.30 mg L-1 across all samples and was significantly higher in streams draining urban catchments (0.72 ± 0.34 mg L-1) compared to streams draining agricultural (0.28 ± 0.15 mg L-1) and forested (0.47 ± 0.17 mg L-1) catchments. Percent BDOC was significantly greater in urban (10% ± 4.4%) streams compared to forested streams (5.6% ± 3.2%), corresponding with greater relative abundances of aliphatic and N-containing aliphatic compounds in urban streams. Aliphatic compound relative abundance decreased across all landcovers during the bioincubation (average -4.1% ± 10%), whereas polyphenolics and condensed aromatics increased in relative abundance across all landcovers (average of +1.4% ± 5.9% and +1.8% ± 10%, respectively). Overall, the conversion of forested to urban landcover had a larger impact on stream DOM bioavailability in the UMRB compared to conversion to agricultural landcover. Future research examining the impacts of anthropogenic landcover conversion on stream DOM composition and bioavailability needs to be expanded to a range of spatial scales and to different ecotones, especially with continued landcover alterations.


Asunto(s)
Materia Orgánica Disuelta , Bosques , Disponibilidad Biológica , Agricultura , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA