Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38251123

RESUMEN

We report ab initio molecular dynamic simulations of the organic structure-directing agent (OSDA) in the channels of SCM-14 and SCM-15 germanosilicates for models with different germanium distribution. Since OSDA was free to move inside the channels, independent of its initial orientation after the simulations in all structures the OSDA, protonated 4-pyrrolidinopyridine, is positioned almost perpendicular to the large channels of SCM-14. The structures obtained from the dynamic simulation are more stable by 157 to 331 kJ/mol than the structures obtained by initial geometry optimization. After simulations, the average distance between the N atom of the pyridine moiety of the OSDA and O from Ge-O-Ge is shorter by 0.2 Å than the same distance obtained from initial optimization. The stretching N-H frequencies in the IR spectra of the OSDA and other calculated vibrational frequencies are not characteristic of the orientation of the molecule and cannot be used to detect it.

2.
J Am Chem Soc ; 145(28): 15313-15323, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37394746

RESUMEN

Structural flexibility is an intrinsic feature of zeolites, and the characterization of such dynamic behavior is key to maximizing their performance and realizing their potential in both existing and emerging applications. Here, the flexibility of a high-aluminum nano-sized RHO zeolite is directly visualized with in situ TEM for the first time. Variable temperature experiments directly observe the physical expansion of the discrete nanocrystals in response to changes in both guest-molecule chemistry (Ar vs CO2) and temperature. The observations are complemented by operando FTIR spectroscopy verifying the nature of the adsorbed CO2 within the pore network, the desorption kinetics of carbonate species, and changes to the structural bands at high temperatures. Quantum chemical modeling of the RHO zeolite structure substantiates the effect of cation (Na+ and Cs+) mobility in the absence and presence of CO2 on the flexibility behavior of the structure. The results demonstrate the combined influences of temperature and CO2 on the structural flexibility consistent with the experimental microscopy observations.

3.
Molecules ; 28(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36838945

RESUMEN

Pd-based catalysts are widely used in the oxidation of CH4 and have a significant impact on global warming. However, understanding their active sites remains controversial, because interconversion between Pd and PdO occurs consecutively during the reaction. Understanding the intrinsic active sites under reaction conditions is critical for developing highly active and selective catalysts. In this study, we demonstrated that partially oxidized palladium (PdOx) on the surface plays an important role for CH4 oxidation. Regardless of whether the initial state of Pd corresponds to oxides or metallic clusters, the topmost surface is PdOx, which is formed during CH4 oxidation. A quantitative analysis using CO titration, diffuse reflectance infrared Fourier-transform spectroscopy, X-ray diffraction, and scanning transmission electron microscopy demonstrated that a surface PdO layer was formed on top of the metallic Pd clusters during the CH4 oxidation reaction. Furthermore, the time-on-stream test of CH4 oxidation revealed that the presence of the PdO layer on top of the metallic Pd clusters improves the catalytic activity. Our periodic density functional theory (DFT) calculations with a PdOx slab and nanoparticle models aided the elucidation of the structure of the experimental PdO particles, as well as the experimental C-O bands. The DFT results also revealed the formation of a PdO layer on the metallic Pd clusters. This study helps achieve a fundamental understanding of the active sites of Pd and PdO for CH4 oxidation and provides insights into the development of active and durable Pd-based catalysts through molecular-level design.


Asunto(s)
Óxidos , Paladio , Dominio Catalítico , Oxidación-Reducción , Paladio/química
4.
J Phys Chem Lett ; 14(6): 1564-1569, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36745575

RESUMEN

To design efficient CO2 capture materials, it is necessary to ensure a high adsorption capacity. We recently reported that one Na+ site in NaY zeolite can attach two CO2 molecules. However, the process is not suitable for practical use because it proceeds at a low temperature. Here, we present results on CO2 adsorption on CaNaY zeolites, demonstrating that one Ca2+ site can attach three CO2 molecules. The ν3(13CO2) mode arising from the natural 13C abundance allows for easy infrared monitoring of the processes: it appears at 2298, 2294, and 2291 cm-1 for the complexes with one, two, and three CO2 ligands, respectively. The 12CO2 molecules in the polyligand complexes interact vibrationally, leading to the split of the ν3(12CO2) modes. At ambient temperature, Ca2+(CO2)2 complexes predominate at >1 mbar CO2 and triligand species begin to form at 65 mbar. The obtained results show that CaY zeolites can be very effective CO2 capture materials.

5.
J Am Chem Soc ; 145(9): 5029-5040, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812067

RESUMEN

Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.

6.
J Phys Chem Lett ; 13(44): 10418-10423, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36326207

RESUMEN

Organic solar cells based on wide band gap polymers and nonfullerene small-molecule acceptors have demonstrated remarkably good device performances. Nevertheless, a thorough understanding of the charge-transfer process in these materials has not been achieved yet. In this study, we use Fano resonance signals caused by the interaction of broad electronic charge carrier absorption and the molecular vibrations of the electron acceptor molecule to monitor the charge-transfer state dynamics. In our time-resolved infrared spectroscopy experiments, we find that in the small-molecule acceptor, they have additional dynamics on the order of a few picoseconds. A change in the solvent used in thin film deposition, leading to different morphologies, influences this time further. We interpret our findings as the dynamics of the charge-transfer state at the interface of the electron donor and the electron- acceptor. The additional mid-infrared transient signal is generated in this state, as both electron and hole polarons can interact with small-molecule acceptor vibrational modes.

7.
Chem Sci ; 13(35): 10383-10394, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277641

RESUMEN

Cu/zeolites efficiently catalyze selective reduction of environmentally harmful nitric oxide with ammonia. Despite over a decade of research, the exact NO reduction steps remain unknown. Herein, using a combined spectroscopic, catalytic and DFT approach, we show that nitrosyl ions (NO+) in zeolitic micropores are the key intermediates for NO reduction. Remarkably, they react with ammonia even below room temperature producing molecular nitrogen (the reaction central to turning the NO pollutant to benign nitrogen) through the intermediacy of the diazo N2H+ cation. Experiments with isotopically labeled N-compounds confirm our proposed reaction path. No copper is required for N2 formation to occur during this step. However, at temperatures below 100 °C, when NO+ reacts with NH3, the bare Brønsted acid site becomes occupied by NH3 to form strongly bound NH4 +, and consequently, this stops the catalytic cycle, because NO+ cannot form on NH4-zeolites when their H+ sites are already occupied by NH4 +. On the other hand, we show that the reaction becomes catalytic on H-zeolites at temperatures when some ammonia desorption can occur (>120 °C). We suggest that the role of Cu(ii) ions in Cu/zeolite catalysts for low-temperature NO reduction is to produce abundant NO+ by the reaction: Cu(ii) + NO → Cu(i)⋯NO+. NO+ then reacts with ammonia to produce nitrogen and water. Furthermore, when Cu(i) gets re-oxidized, the catalytic cycle can then continue. Our findings provide novel understanding of the hitherto unknown steps of the SCR mechanism pertinent to N-N coupling. The observed chemistry of Cu ions in zeolites bears striking resemblance to the copper-containing denitrification and annamox enzymes, which catalyze transformation of NO x species to N2, via di-azo compounds.

8.
ACS Omega ; 7(27): 23234-23244, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847262

RESUMEN

The interactions between Na+ or Mg2+ ions with different parts of single-stranded RNA molecules, namely, the oxygen atoms from the phosphate groups or the guanine base, in water solution have been studied using first-principles molecular dynamics. Sodium ions were found to be much more mobile than Mg2+ ions and readily underwent transitions between a state directly bonded to RNA oxygen atoms and a completely solvated state. The inner solvation shell of Na+ ions fluctuated stochastically at a femtosecond timescale coordinating on average 5 oxygen atoms for bonded Na+ ions and 5.5 oxygen atoms for solvated Na+ ions. In contrast, the inner solvation shell of Mg2+ ions was stable in both RNA-bonded and completely solvated states. In both cases, Mg2+ ions coordinated 6 oxygen atoms from the inner solvation shell. Consistent with their stable solvation shells, Mg2+ ions were more effective than Na+ ions in stabilizing the RNA backbone conformation. The exclusion zones between the first and second solvation shells, solvation shell widths, and angles for binding to carbonyl oxygen of guanine for solvated Na+ or Mg2+ ions exhibited a number of quantitative differences when compared with RNA crystallographic data. The presented results support the distinct capacity of Mg2+ ions to support the RNA structure not only in the crystal phase but also in the dynamic water environment both on the side of the phosphate moiety and on the side of the nucleobase.

9.
Chemistry ; 28(49): e202200684, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35702936

RESUMEN

Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2 O3 and SiO2 . High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2 O3 and SiO2 . In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2 O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2 O3 than those in Pd supported on SiO2 , which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm-1 ) reacted first with oxygen in the case of CO-saturated Pd on Al2 O3 and SiO2 , which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.

10.
Chemistry ; 28(16): e202104339, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35218101

RESUMEN

The mesopores formation in zeolite crystals has long been considered to occur through the stochastic hydrolysis and removal of framework atoms. Here, we investigate the NH4 F etching of representative small, medium, and large pore zeolites and show that the zeolite dissolution behavior, therefore the mesopore formation probability, is dominated by zeolite architecture at both nano- and sub-nano scales. At the nano-scale, the hidden mosaics of zeolite structure predetermine the spatio-temporal dissolution of the framework, hence the size, shape, location, and orientation of the mesopores. At the sub-nano scale, the intrinsic micropore size and connectivity jointly determine the diffusivity of reactant and dissolved products. As a result, the dissolution propensity varies from removing small framework fragments to consuming nanodomains and up to full digestion of the outmost part of zeolite crystals. The new knowledge will lead to new understanding of zeolite dissolution behavior and new adapted strategies for tailoring hierarchical zeolites.

11.
Inorg Chem ; 61(3): 1418-1425, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35015531

RESUMEN

The preparation of defect-free MFI crystals containing single-site framework Mo through a hydrothermal postsynthesis treatment is reported. The insertion of single Mo sites in the MFI zeolite samples with different crystal sizes of 100, 200, and 2000 nm presenting a diverse concentration of silanol groups is revealed. The nature of the silanols and their role in the incorporation of Mo into the zeolite structure are elucidated through an extensive spectroscopic characterization (29Si NMR, 1H NMR, 31P NMR, and IR) combined with X-ray diffraction and HRTEM. In addition, a DFT-based theoretical modeling of a large Si154O354H92 nanoparticle containing 600 atoms is carried out to understand the expansion of the unit cell volume measured by X-ray diffraction. An accurate quantification of the silanols in the MFI crystals with different particle sizes and the insertion of Mo in the zeolitic framework is reported for the first time. The results confirmed that the non-H-bonded silanols seem to be the gateway for the insertion of single Mo atoms in the zeolite structure. Such materials with single metal sites present high crystallinity and perfect structure, thus providing great stability in catalytic applications.

12.
ACS Catal ; 12(15): 9256-9269, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36718273

RESUMEN

Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow.

13.
Molecules ; 26(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34885878

RESUMEN

We used computational modeling, based on Density Functional Theory, to help understand the preference for the formation of silanol nests and the substitution of Si by Ti or Al in different crystallographic positions of the MSE-type framework. All these processes were found to be energetically favorable by more than 100 kJ/mol. We suggested an approach for experimental identification of the T atom position in Ti-MCM-68 zeolite via simulation of infrared spectra of pyridine and acetonitrile adsorption at Ti. The modeling of adsorption of hydrogen peroxide at Ti center in the framework has shown that the molecular adsorption was preferred over the dissociative adsorption by 20 to 40 kJ/mol in the presence or absence of neighboring T-atom vacancy, respectively.

14.
Angew Chem Int Ed Engl ; 60(51): 26702-26709, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34647387

RESUMEN

Zeolite Y and its ultra-stabilized hierarchical derivative (USY) are the most widely used zeolite-based heterogeneous catalysts in oil refining, petrochemisty, and other chemicals manufacturing. After almost 60 years of academic and industrial research, their resilience is unique as no other catalyst displaced them from key processes such as FCC and hydrocracking. The present study highlights the key difference leading to the exceptional catalytic performance of USY versus the parent zeolite Y in a multi-technique study combining advanced spectroscopies (IR and solid-state NMR) and molecular modeling. The results highlight a hitherto unreported proton transfer involving inaccessible active sites in sodalite cages that contributes to the exceptional catalytic performance of USY.

15.
Nat Commun ; 12(1): 6033, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654809

RESUMEN

CO oxidation is of importance both for inorganic and living systems. Transition and precious metals supported on various materials can oxidize CO to CO2. Among them, few systems, such as Au/TiO2, can perform CO oxidation at temperatures as low as -70 °C. Living (an)aerobic organisms perform CO oxidation with nitrate using complex enzymes under ambient temperatures representing an essential pathway for life, which enables respiration in the absence of oxygen and leads to carbonate mineral formation. Herein, we report that CO can be oxidized to CO2 by nitrate at -140 °C within an inorganic, nonmetallic zeolitic system. The transformation of NOx and CO species in zeolite as well as the origin of this unique activity is clarified using a joint spectroscopic and computational approach.

16.
J Chem Phys ; 154(18): 184706, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241012

RESUMEN

Rh(C2H4)2 species grafted on the HY zeolite framework significantly enhance the activation of H2 that reacts with C2H4 ligands to form C2H6. While in this case, the simultaneous activation of C2H4 and H2 and the reaction between these species on zeolite-loaded Rh cations is a legitimate hydrogenation pathway yielding C2H6, the results obtained for Rh(CO)(C2H4)/HY materials exposed to H2 convincingly show that the support-assisted C2H4 hydrogenation pathway also exists. This additional and previously unrecognized hydrogenation pathway couples with the conversion of C2H4 ligands on Rh sites and contributes significantly to the overall hydrogenation activity. This pathway does not require simultaneous activation of reactants on the same metal center and, therefore, is mechanistically different from hydrogenation chemistry exhibited by molecular organometallic complexes. We also demonstrate that the conversion of zeolite-supported Rh(CO)2 complexes into Rh(CO)(C2H4) species under ambient conditions is not a simple CO/C2H4 ligand exchange reaction on Rh sites, as this process also involves the conversion of C2H4 into C4 hydrocarbons, among which 1,3-butadiene is the main product formed with the initial selectivity exceeding 98% and the turnover frequency of 8.9 × 10-3 s-1. Thus, the primary role of zeolite-supported Rh species is not limited to the activation of H2, as these species significantly accelerate the formation of the C4 hydrocarbons from C2H4 even without the presence of H2 in the feed. Using periodic density functional theory calculations, we examined several catalytic pathways that can lead to the conversion of C2H4 into 1,3-butadiene over these materials and identified the reaction route via intermediate formation of rhodacyclopentane.

17.
Phys Chem Chem Phys ; 22(45): 26568-26582, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33201159

RESUMEN

Structural properties and reducibility of zirconium-doped cerium dioxide systems were studied using periodic plane-wave calculations based on density functional theory. A systematic analysis of the results for nanoparticles of two sizes, Ce40-nZrnO80 ∼ 1.5 nm large and Ce140-nZrnO280 ∼ 2.4 nm large, in comparison with slab model data for Ce1-xZrxO2(111) surface has been performed focusing on specific nanoscale effects. Several loadings of Zr dopants ranging from 0.7 to 50 atomic metal percent have been considered. Subsurface cationic sites of ceria are calculated to be energetically most favourable for doping Zr4+ ions in all models. The system stability with several zirconium ions is defined by the relative stability of the occupied individual Zr4+ positions when only one zirconium ion is present. Data for the Ce70Zr70O280 nanoparticle with an equal number of Ce4+ and Zr4+ cations reveal that atomic orderings of neither separated oxide (Janus-type) particles nor randomly intermixed ones are more stable than the distribution of Zr atoms occupying all cationic positions inside the nanoparticle to minimize the presence of surface zirconium. The basicity of surface oxygen centers in nanoparticles is predicted to be decreased when Zr dopants are located in surface positions. The presence of Zr4+ dopants in CeO2 systems can notably lower the oxygen vacancy formation energy and shows interesting peculiarities at higher Zr loadings. Among them is the higher stability of inner oxygen vacancies in Zr-containing nanoparticles and enhanced oxygen mobility beneficial for application in catalysis and as a solid electrolyte with oxygen ions as charge carriers. Similar to pure ceria, Zr-doped ceria nanoparticles exhibit notably higher reducibility than the corresponding extended systems.

18.
Molecules ; 25(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158297

RESUMEN

Magnetic iron oxide containing MCM-41 silica (MM) with ~300 nm particle size was developed. The MM material before or after template removal was modified with NH2- or COOH-groups and then grafted with PEG chains. The anticancer drug tamoxifen was loaded into the organic groups' modified and PEGylated nanoparticles by an incipient wetness impregnation procedure. The amount of loaded drug and the release properties depend on whether modification of the nanoparticles was performed before or after the template removal step. The parent and drug-loaded samples were characterized by XRD, N2 physisorption, thermal gravimetric analysis, and ATR FT-IR spectroscopy. ATR FT-IR spectroscopic data and density functional theory (DFT) calculations supported the interaction between the mesoporous silica surface and tamoxifen molecules and pointed out that the drug molecule interacts more strongly with the silicate surface terminated by silanol groups than with the surface modified with carboxyl groups. A sustained tamoxifen release profile was obtained by an in vitro experiment at pH = 7.0 for the PEGylated formulation modified by COOH groups after the template removal. Free drug and formulated tamoxifen samples were further investigated for antiproliferative activity against MCF-7 cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Portadores de Fármacos , Óxido Ferrosoférrico , Polietilenglicoles , Dióxido de Silicio , Tamoxifeno , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/farmacocinética , Óxido Ferrosoférrico/farmacología , Humanos , Células MCF-7 , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Dióxido de Silicio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Tamoxifeno/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacología
19.
Eur J Pharm Biopharm ; 142: 460-472, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31336182

RESUMEN

ZSM-5/KIT-6 and ZSM-5/SBA-15 nanoparticles were synthesized and further modified by a post-synthesis method with (CH2)3SO3H and (CH2)3NHCO(CH2)2COOH groups to optimize their drug loading and release kinetic profiles. The verapamil cargo drug was loaded by incipient wetness impregnation both on the parent and modified nanoporous supports. Nanocarriers were then coated with a three-layer polymeric shell composed of chitosan-k-carrageenan-chitosan with grafted polysulfobetaine chains. The parent and drug loaded formulations were characterized by powder XRD, N2 physisorption, thermal analysis, AFM, DLS, TEM, ATR-FT-IR and solid state NMR spectroscopies. Loading of verapamil on such nanoporous carriers and their subsequent polymer coating resulted in a prolonged in vitro release of the drug molecules. Quantum-chemical calculations were performed to investigate the strength of the interaction between the specific functional groups of the drug molecule and (CH2)3SO3H and CH2)3NHCO(CH2)2COOH groups of the drug carrier. Furthermore, the ability of the developed nanocomposites to positively modulate the intracellular internalization and thereby augment the antitumor activity of the p-gp substrate drug doxorubicin was investigated in a comparative manner vs. free drug in a panel of MDR positive (HL-60/Dox, HT-29) and MDR negative (HL-60) human cancer cell lines using the Chou-Talalay method.


Asunto(s)
Antineoplásicos/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Nanocompuestos/química , Polímeros/química , Dióxido de Silicio/química , Verapamilo/química , Línea Celular Tumoral , Quitosano/química , Doxorrubicina/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Células HL-60 , Células HT29 , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/química , Porosidad
20.
ACS Appl Mater Interfaces ; 11(13): 12914-12919, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30859810

RESUMEN

The assembly of highly hydrophobic nanosized tungsten-containing MFI-type zeolite nanocrystals (W-MFI) in films and further use of the films for selective exhaust gas (CO, CO2, NO, and NO2) detection were investigated by operando IR spectroscopy. Because of the hydrophobic nature and presence of tungsten in the framework, the W-MFI films showed excellent sorption capacity toward all analytes, in comparison to the pure silica (Si-MFI) film. The high sensitivity of the W-MFI film toward low concentration of CO2 and NO2 (1-3 ppm) was demonstrated. In addition, the interactions between the analytes and zeolite films have been studied by quantum chemical calculation modeling of the W centers based on the density functional theory method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...