Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1902, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429273

RESUMEN

As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO3, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO3. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.

2.
Nano Lett ; 22(19): 7992-7999, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162104

RESUMEN

One of the major obstacles to realizing spintronic devices such as MESO logic devices is the small signal magnitude used for magnetization readout, making it important to find materials with high spin-to-charge conversion efficiency. Although intermixing at the junction of two materials is a widely occurring phenomenon, its influence on material characterization and the estimation of spin-to-charge conversion efficiencies are easily neglected or underestimated. Here, we demonstrate all-electrical spin-to-charge conversion in BixSe1-x nanodevices and show how the conversion efficiency can be overestimated by tens of times depending on the adjacent metal used as a contact. We attribute this to the intermixing-induced compositional change and the properties of a polycrystal that lead to drastic changes in resistivity and spin Hall angle. Strategies to improve the spin-to-charge conversion signal in similar structures for functional devices are discussed.

3.
Nat Mater ; 21(5): 526-532, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35256792

RESUMEN

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Asunto(s)
Nanocables , Electricidad , Electricidad Estática , Estereoisomerismo , Telurio
4.
Adv Mater ; 33(43): e2102102, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34499763

RESUMEN

Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO3 (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO3 is reported. 2DEGs are generated by the simple deposition of Al metal onto KTaO3 single crystals, characterized by angle-resolved photoemission spectroscopy and magnetotransport, and shown to display the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. Their spin-charge interconversion efficiency is then compared with that of STO-based interfaces, related to the 2DEG electronic structure, and perspectives are given for the implementation of KTaO3 2DEGs into spin-orbitronic devices is compared.

5.
Nature ; 580(7804): 483-486, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322081

RESUMEN

After 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems1 needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted2, the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents3. However, magnetization reversal by spin transfer torques4 is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization5, but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)6-9 to manipulate the spin-orbit properties10 of a two-dimensional electron gas11, and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.

6.
Nano Lett ; 20(1): 395-401, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31859513

RESUMEN

Spintronics entails the generation, transport, manipulation and detection of spin currents, usually in hybrid architectures comprising interfaces whose impact on performance is detrimental. In addition, how spins are generated and detected is generally material specific and determined by the electronic structure. Here, we demonstrate spin current generation, transport and electrical detection, all within a single non-magnetic material system: a SrTiO3 two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling. We show that the spin current is generated from a charge current by the 2D spin Hall effect, transported through a channel and reconverted into a charge current by the inverse 2D spin Hall effect. Furthermore, by adjusting the Fermi energy with a gate voltage we tune the generated and detected spin polarization and relate it to the complex multiorbital band structure of the 2DEG. We discuss the leading mechanisms of the spin-charge interconversion processes and argue for the potential of quantum oxide materials for future all-electrical low-power spin-based logic.

7.
Nat Mater ; 18(11): 1187-1193, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31501554

RESUMEN

While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO3 two-dimensional electron gas and map its gate dependence on the band structure. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide two-dimensional electron gases are strong candidates for spin-based information readout in new memory and transistor designs. Our results also emphasize the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...