Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273516

RESUMEN

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Asunto(s)
Pinzones , Muscidae , Parásitos , Animales , Humanos , Pinzones/parasitología , Ecuador
2.
Mol Ecol ; 32(22): 6059-6069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837269

RESUMEN

Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.


Asunto(s)
Pinzones , Microbioma Gastrointestinal , Muscidae , Passeriformes , Animales , Urbanización , Pinzones/microbiología , Bacterias
3.
Ecol Evol ; 13(5): e10079, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37187967

RESUMEN

The disruption of animals' symbiotic bacterial communities (their microbiota) has been associated with myriad factors including changes to the diet, hormone levels, and various stressors. The maintenance of healthy bacterial communities may be especially challenging for social species as their microbiotas are also affected by group membership, social relationships, microbial transfer between individuals, and social stressors such as increased competition and rank maintenance. We investigated the effects of increased social instability, as determined by the number of group changes made by females, on the microbiota in free-living, feral horses (Equus caballus) on Shackleford Banks, a barrier island off the North Carolina coast. Females leaving their groups to join new ones had fecal microbial communities that were similarly diverse but compositionally different than those of females that did not change groups. Changing groups was also associated with the increased abundance of a several bacterial genera and families. These changes may be significant as horses are heavily dependent upon their microbial communities for nutrient absorption. Though we cannot identify the particular mechanism(s) driving these changes, to the best of our knowledge, ours is the first study to demonstrate an association between acute social perturbations and the microbiota in a free-ranging mammal.

4.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34878103

RESUMEN

The invasive avian vampire fly (Philornis downsi, Diptera: Muscidae) is considered one of the greatest threats to the endemic avifauna of the Galápagos Islands. The fly larvae parasitize nearly every passerine species, including Darwin's finches. Most P. downsi research to date has focused on the effects of the fly on avian host fitness and mitigation methods. A lag in research related to the genetics of this invasion demonstrates, in part, the need to develop full-scale genomic resources with which to address further questions within this system. In this study, an adult female P. downsi was sequenced to generate a high-quality genome assembly. We examined various features of the genome (e.g., coding regions and noncoding transposable elements) and carried out comparative genomics analysis against other dipteran genomes. We identified lists of gene families that are significantly expanding or contracting in P. downsi that are related to insecticide resistance, detoxification, and counter defense against host immune responses. The P. downsi genome assembly provides an important resource for studying the molecular basis of successful invasion in the Galápagos and the dynamics of its population across multiple islands. The findings of significantly changing gene families associated with insecticide resistance and immune responses highlight the need for further investigations into the role of different gene families in aiding the fly's successful invasion. Furthermore, this genomic resource provides a necessary tool to better inform future research studies and mitigation strategies aimed at minimizing the fly's impact on Galápagos birds.


Asunto(s)
Pinzones , Muscidae , Parásitos , Animales , Ecuador/epidemiología , Femenino , Pinzones/genética , Pinzones/parasitología , Humanos , Larva , Muscidae/genética
5.
J Wildl Dis ; 55(1): 64-73, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29999463

RESUMEN

Life history trade-offs have been posited to shape wild animals' immune responses against microparasites (e.g., bacteria, viruses). However, coinfection with gut helminths may bias immune phenotypes away from inflammatory responses and could be another mechanism underlying variation in immune responses. We examined how the magnitude of a common and costly response to microparasites, the acute phase response (APR), varied with helminth coinfection at both the individual and the population levels in Song Sparrows ( Melospiza melodia). The APR includes fever and sickness behaviors, like lethargy and anorexia, and provides a whole-organism metric of immune activation. We combined data on fever and lethargy in response to an immune challenge (lipopolysaccharide) with postmortem data assessing helminth burdens and data on malarial parasite infection from blood samples in sparrows from two populations: southern California and western Washington, US. We predicted that birds with higher helminth burdens would express less severe APRs, at both the individual and population levels. Furthermore, we predicted that these reduced immune responses would diminish resistance against malarial parasites and would thus be associated with higher prevalences of such parasites. Previously, Song Sparrows from Washington have been shown to mount less severe APRs than those from California. In our study, Washington birds also exhibited higher helminth burdens and a higher prevalence of one type of avian malarial parasite. Because of low variation in helminth burdens in California (median=0, range=0-3), we tested within-population relationships only in birds from Washington, where the severity of fever and lethargy correlated negatively with helminth burden. These results suggested that helminth coinfection could help mediate immune responsiveness in wild songbirds.


Asunto(s)
Enfermedades de las Aves/parasitología , Helmintiasis Animal/inmunología , Malaria Aviar/inmunología , Pájaros Cantores/parasitología , Distribución Animal , Animales , Animales Salvajes , Enfermedades de las Aves/inmunología , California/epidemiología , Helmintiasis Animal/complicaciones , Malaria Aviar/complicaciones , Masculino , Washingtón/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...