Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Ann Surg ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975668

RESUMEN

OBJECTIVE: This study focuses on dose-response investigation using a codon-optimized and de novo-synthesized E-Selectin/AAV2 (E-Sel/AAV2) vector in preparation for Investigational New Drug (IND)-enabling of subsequent clinical studies. BACKGROUND: Gene therapy is a potential solution for patients suffering from chronic limb-threatening ischemia (CLTI). Understanding the dose for effective gene delivery is crucial for future IND-enabling studies. METHODS: Expression of the codon-optimized E-Selectin gene was assessed by flow cytometry following in vitro cell transfection assay and RT-qPCR for murine limbs injected in vivo with AAV-m-E-Selectin (E-Sel/AAV2). Dose-response studies involved three cohorts of FVB/NJ mice (n=6/group) with escalating log doses of E-Selectin/AAV2 injected intramuscularly (IM) in divided aliquots, ranging from 2×109 VG to 2×1011 VG, into ischemic limbs created by left femoral artery/vein ligation/excision and administration of nitric oxide synthase inhibitor, L-NAME. Limb perfusion, extent of gangrene free limb, functional limb recovery and therapeutic angiogenesis were assessed. RESULTS: Codon-optimized E-Sel/AAV2 gene therapy exhibits superior expression level than WT E-Sel/AAV2 gene therapy both in vitro and in vivo. Mice treated with a high dose (2×1011 VG) of E-Sel/AAV2 showed significantly improved perfusion indices, lower Faber's scores, increased running stamina and neovascularization compared with lower doses tested with control groups, indicating a distinct dose-dependent response. No toxicity was detected in any of the animal groups studied. CONCLUSION: E-Sel/AAV2 Vascular Regeneration Gene Therapy (VRGT) holds promise for enhancing the recovery of ischemic hindlimb perfusion and function, with the effective dose identified in this study as 2×1011 VG aliquots injected IM.

2.
Biomedicines ; 12(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927565

RESUMEN

BACKGROUND: Critical limb ischemia (CLI) is the end stage of peripheral artery disease (PAD), and around 30% of CLI patients are ineligible for current treatments. The angiogenic benefits of c-Kit have been reported in the ischemia scenario; however, the present study demonstrates the effects of specific endothelial c-Kit signaling in arteriogenesis during hindlimb ischemia. METHODS: We created conditional knockout mouse models that decrease c-Kit (c-Kit VE-Cadherin CreERT2-c-Kit) or its ligand (SCF VE-Cadherin CreERT2-SCF) specifically in endothelial cells (ECs) after tamoxifen treatment. These mice and a control group (wild-type VE-Cadherin CreERT2-WT) were subjected to hindlimb ischemia or aortic crush to evaluate perfusion/arteriogenesis and endothelial barrier permeability, respectively. RESULTS: Our data confirmed the lower gene expression of c-Kit and SCF in the ECs of c-Kit and SCF mice, respectively. In addition, we confirmed the lower percentage of ECs positive for c-Kit in c-Kit mice. Further, we found that c-Kit and SCF mice had better limb perfusion and arteriogenesis compared to WT mice. We also demonstrated that c-Kit and SCF mice had a preserved endothelial barrier after aortic crush compared to WT. CONCLUSIONS: Our data demonstrate the deleterious effects of endothelial SCF/c-Kit signaling on arteriogenesis and endothelial barrier integrity.

3.
Cells ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786017

RESUMEN

Arteries and veins develop different types of occlusive diseases and respond differently to injury. The biological reasons for this discrepancy are not well understood, which is a limiting factor for the development of vein-targeted therapies. This study contrasts human peripheral arteries and veins at the single-cell level, with a focus on cell populations with remodeling potential. Upper arm arteries (brachial) and veins (basilic/cephalic) from 30 organ donors were compared using a combination of bulk and single-cell RNA sequencing, proteomics, flow cytometry, and histology. The cellular atlases of six arteries and veins demonstrated a 7.8× higher proportion of contractile smooth muscle cells (SMCs) in arteries and a trend toward more modulated SMCs. In contrast, veins showed a higher abundance of endothelial cells, pericytes, and macrophages, as well as an increasing trend in fibroblasts. Activated fibroblasts had similar proportions in both types of vessels but with significant differences in gene expression. Modulated SMCs and activated fibroblasts were characterized by the upregulation of MYH10, FN1, COL8A1, and ITGA10. Activated fibroblasts also expressed F2R, POSTN, and COMP and were confirmed by F2R/CD90 flow cytometry. Activated fibroblasts from veins were the top producers of collagens among all fibroblast populations from both types of vessels. Venous fibroblasts were also highly angiogenic, proinflammatory, and hyper-responders to reactive oxygen species. Differences in wall structure further explain the significant contribution of fibroblast populations to remodeling in veins. Fibroblasts are almost exclusively located outside the external elastic lamina in arteries, while widely distributed throughout the venous wall. In line with the above, ECM-targeted proteomics confirmed a higher abundance of fibrillar collagens in veins vs. more basement ECM components in arteries. The distinct cellular compositions and transcriptional programs of reparative populations in arteries and veins may explain differences in acute and chronic wall remodeling between vessels. This information may be relevant for the development of antistenotic therapies.


Asunto(s)
Arterias , Miocitos del Músculo Liso , Análisis de la Célula Individual , Remodelación Vascular , Venas , Humanos , Arterias/metabolismo , Venas/metabolismo , Miocitos del Músculo Liso/metabolismo , Fibroblastos/metabolismo , Masculino , Femenino , Persona de Mediana Edad
4.
Pharmacol Ther ; 255: 108604, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360205

RESUMEN

The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Enfermedades Metabólicas , Neoplasias , Enfermedades Neurodegenerativas , Humanos , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Calcio/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad Crónica , Enfermedades Cardiovasculares/tratamiento farmacológico , Inmunidad , Alimentos Marinos , Neoplasias/tratamiento farmacológico
5.
PLoS One ; 19(1): e0296264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206912

RESUMEN

The venous system has been historically understudied despite its critical roles in blood distribution, heart function, and systemic immunity. This study dissects the microanatomy of upper arm veins at the single cell level, and how it relates to wall structure, remodeling processes, and inflammatory responses to injury. We applied single-cell RNA sequencing to 4 non-diseased human veins (3 basilic, 1 cephalic) obtained from organ donors, followed by bioinformatic and histological analyses. Unsupervised clustering of 20,006 cells revealed a complex ecosystem of endothelial cell (EC) types, smooth muscle cell (SMCs) and pericytes, various types of fibroblasts, and immune cell populations. The venous endothelium showed significant upregulation of cell adhesion genes, with arteriovenous zonation EC phenotypes highlighting the heterogeneity of vasa vasorum (VV) microvessels. Venous SMCs had atypical contractile phenotypes and showed widespread localization in the intima and media. MYH11+DESlo SMCs were transcriptionally associated with negative regulation of contraction and pro-inflammatory gene expression. MYH11+DEShi SMCs showed significant upregulation of extracellular matrix genes and pro-migratory mediators. Venous fibroblasts ranging from secretory to myofibroblastic phenotypes were 4X more abundant than SMCs and widely distributed throughout the wall. Fibroblast-derived angiopoietin-like factors were identified as versatile signaling hubs to regulate angiogenesis and SMC proliferation. An abundant monocyte/macrophage population was detected and confirmed by histology, including pro-inflammatory and homeostatic phenotypes, with cell counts positively correlated with age. Ligand-receptor interactome networks identified the venous endothelium in the main lumen and the VV as a niche for monocyte recruitment and infiltration. This study underscores the transcriptional uniqueness of venous cells and their relevance for vascular inflammation and remodeling processes. Findings from this study may be relevant for molecular investigations of upper arm veins used for vascular access creation, where single-cell analyses of cell composition and phenotypes are currently lacking.


Asunto(s)
Ecosistema , Venas , Humanos , Fenotipo , Células Cultivadas , Perfilación de la Expresión Génica , Miocitos del Músculo Liso/metabolismo
6.
Sci Rep ; 13(1): 19538, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945645

RESUMEN

Neonatal hyperoxia induces long-term systemic vascular stiffness and cardiovascular remodeling, but the mechanisms are unclear. Chemokine receptor 7 (CXCR7) represents a key regulator of vascular homeostasis and repair by modulating TGF-ß1 signaling. This study investigated whether pharmacological CXCR7 agonism prevents neonatal hyperoxia-induced systemic vascular stiffness and cardiac dysfunction in juvenile rats. Newborn Sprague Dawley rat pups assigned to room air or hyperoxia (85% oxygen), received CXCR7 agonist, TC14012 or placebo for 3 weeks. These rat pups were maintained in room air until 6 weeks when aortic pulse wave velocity doppler, cardiac echocardiography, aortic and left ventricular (LV) fibrosis were assessed. Neonatal hyperoxia induced systemic vascular stiffness and cardiac dysfunction in 6-week-old rats. This was associated with decreased aortic and LV CXCR7 expression. Early treatment with TC14012, partially protected against neonatal hyperoxia-induced systemic vascular stiffness and improved LV dysfunction and fibrosis in juvenile rats by decreasing TGF-ß1 expression. In vitro, hyperoxia-exposed human umbilical arterial endothelial cells and coronary artery endothelial cells had increased TGF-ß1 levels. However, treatment with TC14012 significantly reduced the TGF-ß1 levels. These results suggest that dysregulation of endothelial CXCR7 signaling may contribute to neonatal hyperoxia-induced systemic vascular stiffness and cardiac dysfunction.


Asunto(s)
Hiperoxia , Disfunción Ventricular Izquierda , Animales , Humanos , Ratas , Animales Recién Nacidos , Células Endoteliales , Fibrosis , Hiperoxia/complicaciones , Análisis de la Onda del Pulso , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Remodelación Vascular
7.
J Vasc Access ; : 11297298231192386, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589266

RESUMEN

BACKGROUND: Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS: In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin ß6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS: We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvß5 and α5ß1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the ß subunit of integrin αvß6. This integrin is critical for the activation of the major fibrosis factor TGFß, and overexpression of PF4 promotes activation of the TGFß pathway. CONCLUSIONS: These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFß pathway.

8.
Ann Surg ; 278(3): 383-395, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334717

RESUMEN

OBJECTIVE: Here, we report a new method to increase the therapeutic potential of mesenchymal stem/stromal cells (MSCs) for ischemic wound healing. We tested biological effects of MSCs modified with E-selectin, a cell adhesion molecule capable of inducing postnatal neovascularization, on a translational murine model. BACKGROUND: Tissue loss significantly worsens the risk of extremity amputation for patients with chronic limb-threatening ischemia. MSC-based therapeutics hold major promise for wound healing and therapeutic angiogenesis, but unmodified MSCs demonstrate only modest benefits. METHODS: Bone marrow cells harvested from FVB/ROSA26Sor mTmG donor mice were transduced with E-selectin-green fluorescent protein (GFP)/AAV-DJ or GFP/AAV-DJ (control). Ischemic wounds were created via a 4 mm punch biopsy in the ipsilateral limb after femoral artery ligation in recipient FVB mice and subsequently injected with phosphate-buffered saline or 1×10 6 donor MSC GFP or MSC E-selectin-GFP . Wound closure was monitored daily for 7 postoperative days, and tissues were harvested for molecular and histologic analysis and immunofluorescence. Whole-body DiI perfusion and confocal microscopy were utilized to evaluate wound angiogenesis. RESULTS: Unmodified MSCs do not express E-selectin, and MSC E-selectin-GFP gain stronger MSC phenotype yet maintain trilineage differentiation and colony-forming capability. MSC E-selectin-GFP therapy accelerates wound healing compared with MSC GFP and phosphate-buffered saline treatment. Engrafted MSC E-selectin-GFP manifest stronger survival and viability in wounds at postoperative day 7. Ischemic wounds treated with MSC E-selectin-GFP exhibit more abundant collagen deposition and enhanced angiogenic response. CONCLUSIONS: We establish a novel method to potentiate regenerative and proangiogenic capability of MSCs by modification with E-selectin/adeno-associated virus. This innovative therapy carries the potential as a platform worthy of future clinical studies.


Asunto(s)
Selectina E , Trasplante de Células Madre Mesenquimatosas , Ratones , Animales , Cicatrización de Heridas/fisiología , Extremidades , Fosfatos/farmacología
9.
Cells ; 12(11)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37296603

RESUMEN

Most patients with end-stage renal disease (ESRD) and advanced chronic kidney disease (CKD) choose hemodialysis as their treatment of choice. Thus, upper-extremity veins provide a functioning arteriovenous access to reduce dependence on central venous catheters. However, it is unknown whether CKD reprograms the transcriptome of veins and primes them for arteriovenous fistula (AVF) failure. To examine this, we performed transcriptomic analyses of bulk RNA sequencing data of veins isolated from 48 CKD patients and 20 non-CKD controls and made the following findings: (1) CKD converts veins into immune organs by upregulating 13 cytokine and chemokine genes, and over 50 canonical and noncanonical secretome genes; (2) CKD increases innate immune responses by upregulating 12 innate immune response genes and 18 cell membrane protein genes for increased intercellular communication, such as CX3CR1 chemokine signaling; (3) CKD upregulates five endoplasmic reticulum protein-coding genes and three mitochondrial genes, impairing mitochondrial bioenergetics and inducing immunometabolic reprogramming; (4) CKD reprograms fibrogenic processes in veins by upregulating 20 fibroblast genes and 6 fibrogenic factors, priming the vein for AVF failure; (5) CKD reprograms numerous cell death and survival programs; (6) CKD reprograms protein kinase signal transduction pathways and upregulates SRPK3 and CHKB; and (7) CKD reprograms vein transcriptomes and upregulates MYCN, AP1, and 11 other transcription factors for embryonic organ development, positive regulation of developmental growth, and muscle structure development in veins. These results provide novel insights on the roles of veins as immune endocrine organs and the effect of CKD in upregulating secretomes and driving immune and vascular cell differentiation.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Insuficiencia Renal Crónica , Humanos , Proteína Proto-Oncogénica N-Myc/metabolismo , Derivación Arteriovenosa Quirúrgica/métodos , Venas , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal
10.
Cardiovasc Ther ; 2023: 6679390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251271

RESUMEN

The response to ischemia in peripheral artery disease (PAD) depends on compensatory neovascularization and coordination of tissue regeneration. Identifying novel mechanisms regulating these processes is critical to the development of nonsurgical treatments for PAD. E-selectin is an adhesion molecule that mediates cell recruitment during neovascularization. Therapeutic priming of ischemic limb tissues with intramuscular E-selectin gene therapy promotes angiogenesis and reduces tissue loss in a murine hindlimb gangrene model. In this study, we evaluated the effects of E-selectin gene therapy on skeletal muscle recovery, specifically focusing on exercise performance and myofiber regeneration. C57BL/6J mice were treated with intramuscular E-selectin/adeno-associated virus serotype 2/2 gene therapy (E-sel/AAV) or LacZ/AAV2/2 (LacZ/AAV) as control and then subjected to femoral artery coagulation. Recovery of hindlimb perfusion was assessed by laser Doppler perfusion imaging and muscle function by treadmill exhaustion and grip strength testing. After three postoperative weeks, hindlimb muscle was harvested for immunofluorescence analysis. At all postoperative time points, mice treated with E-sel/AAV had improved hindlimb perfusion and exercise capacity. E-sel/AAV gene therapy also increased the coexpression of MyoD and Ki-67 in skeletal muscle progenitors and the proportion of Myh7+ myofibers. Altogether, our findings demonstrate that in addition to improving reperfusion, intramuscular E-sel/AAV gene therapy enhances the regeneration of ischemic skeletal muscle with a corresponding benefit on exercise performance. These results suggest a potential role for E-sel/AAV gene therapy as a nonsurgical adjunct in patients with life-limiting PAD.


Asunto(s)
Neovascularización Fisiológica , Enfermedad Arterial Periférica , Ratones , Animales , Selectina E/genética , Ratones Endogámicos C57BL , Músculo Esquelético/irrigación sanguínea , Isquemia/genética , Isquemia/terapia , Terapia Genética/métodos , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/terapia , Miembro Posterior/irrigación sanguínea , Desarrollo de Músculos , Modelos Animales de Enfermedad
11.
Kidney Int Rep ; 8(4): 837-850, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37069981

RESUMEN

Introduction: The molecular transformation of the human preaccess vein after arteriovenous fistula (AVF) creation is poorly understood. This limits our ability to design efficacious therapies to improve maturation outcomes. Methods: Bulk RNA sequencing (RNA-seq) followed by paired bioinformatic analyses and validation assays were performed in 76 longitudinal vascular biopsies (veins and AVFs) from 38 patients with stage 5 chronic kidney disease or end-stage kidney disease undergoing surgeries for 2-stage AVF creation (19 matured, 19 failed). Results: A total of 3637 transcripts were differentially expressed between veins and AVFs independent of maturation outcomes, with 80% upregulated in fistulas. The postoperative transcriptome demonstrated transcriptional activation of basement membrane and interstitial extracellular matrix (ECM) components, including preexisting and novel collagens, proteoglycans, hemostasis factors, and angiogenesis regulators. A postoperative intramural cytokine storm involved >80 chemokines, interleukins, and growth factors. Postoperative changes in ECM expression were differentially distributed in the AVF wall, with proteoglycans and fibrillar collagens predominantly found in the intima and media, respectively. Interestingly, upregulated matrisome genes were enough to make a crude separation of AVFs that failed from those with successful maturation. We identified 102 differentially expressed genes (DEGs) in association with AVF maturation failure, including upregulation of network collagen VIII in medial smooth muscle cells (SMCs) and downregulation of endothelial-predominant transcripts and ECM regulators. Conclusion: This work delineates the molecular changes that characterize venous remodeling after AVF creation and those relevant to maturation failure. We provide an essential framework to streamline translational models and our search for antistenotic therapies.

12.
Front Cardiovasc Med ; 10: 1124106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926045

RESUMEN

Background: Arteriovenous fistula (AVF) postoperative stenosis is a persistent healthcare problem for hemodialysis patients. We have previously demonstrated that fibrotic remodeling contributes to AVF non-maturation and lysyl oxidase (LOX) is upregulated in failed AVFs compared to matured. Herein, we developed a nanofiber scaffold for the periadventitial delivery of ß-aminopropionitrile (BAPN) to determine whether unidirectional periadventitial LOX inhibition is a suitable strategy to promote adaptive AVF remodeling in a rat model of AVF remodeling. Methods: Bilayer poly (lactic acid) ([PLA)-]- poly (lactic-co-glycolic acid) ([PLGA)] scaffolds were fabricated with using a two-step electrospinning process to confer directionality. BAPN-loaded and vehicle control scaffolds were wrapped around the venous limb of a rat femoral-epigastric AVF during surgery. AVF patency and lumen diameter were followed monitored using Doppler ultrasound surveillance and flow was measured before euthanasia. AVFs were harvested after 21 days for histomorphometry and immunohistochemistry. AVF compliance was measured using pressure myography. RNA from AVF veins was sequenced to analyze changes in gene expression due to LOX inhibition. Results: Bilayer periadventitial nanofiber scaffolds extended BAPN release compared to the monolayer design (p < 0.005) and only released BAPN in one direction. Periadventitial LOX inhibition led to significant increases in AVF dilation and flow after 21 days. Histologically, BAPN trended toward increased lumen and significantly reduced fibrosis compared to control scaffolds (p < 0.01). Periadventitial BAPN reduced downregulated markers associated with myofibroblast differentiation including SMA, FSP-1, LOX, and TGF-ß while increasing the contractile marker MYH11. RNA sequencing revealed differential expression of matrisome genes. Conclusion: Periadventitial BAPN treatment reduces fibrosis and promotes AVF compliance. Interestingly, the inhibition of LOX leads to increased accumulation of contractile VSMC while reducing myofibroblast-like cells. Periadventitial LOX inhibition alters the matrisome to improve AVF vascular remodeling.

13.
J Vasc Access ; 24(1): 99-106, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33960241

RESUMEN

Neointimal cells are an elusive population with ambiguous origins, functions, and states of differentiation. Expansion of the venous intima in arteriovenous fistula (AVF) is one of the most prominent remodeling processes in the wall after access creation. However, most of the current knowledge about neointimal cells in AVFs comes from extrapolations from the arterial neointima in non-AVF systems. Understanding the origin of neointimal cells in fistulas may have important implications for the design and effective delivery of therapies aimed to decrease intimal hyperplasia (IH). In addition, a broader knowledge of cellular dynamics during postoperative remodeling of the AVF may help clarify other transformation processes in the wall that combined with IH determine the successful remodeling or failure of the access. In this review, we discuss the possible anatomical sources of neointimal cells in AVFs and their relative contribution to intimal expansion.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Neointima , Derivación Arteriovenosa Quirúrgica/efectos adversos , Hiperplasia , Arterias
14.
J Vasc Access ; 24(6): 1529-1534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35441557

RESUMEN

Early remodeling of the arteriovenous fistula (AVF) determines maturation outcomes. However, the cellular response of the venous wall early after AVF creation remains largely enigmatic because of the lack of venous biopsies obtained shortly after anastomosis. This report presents a detailed immunohistochemistry analysis of a pre-access cephalic vein and the resulting seven-day-old AVF that required ligation due to steal syndrome. We test for markers of mature and progenitor endothelial cells (CD31, CD34, VWF), contractile smooth muscle cells and myofibroblasts (MYH11, SMA), and immune cell populations (CEACAM8, CD3, CD20, CD11b, CD45, CD68, CD163, tryptase). We demonstrated near complete endothelial coverage of the fistula at 7 days, a high degree of wall neovascularization, pronounced loss of myofibroblasts and smooth muscle cells, and significant infiltration of mast cells, neutrophils, monocytes, and macrophages. Of interest, the presence of CD163+ macrophages in the AVF suggests a reactive response to increased intramural oxygenation. In conclusion, these images provide for the first time a glimpse of early remodeling in a human AVF by immunohistochemistry. This case demonstrates the possibility to obtain additional precious samples of this early stage through future multicenter collaborative efforts.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Células Endoteliales , Diálisis Renal/métodos , Venas/diagnóstico por imagen , Venas/cirugía , Venas/patología , Femenino , Persona de Mediana Edad
15.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36394956

RESUMEN

We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. ß-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Células Endoteliales , Inmunidad Entrenada , Hígado/metabolismo , Inflamación/metabolismo , Enfermedades Cardiovasculares/metabolismo , Aorta , Insuficiencia Renal Crónica/metabolismo
16.
J Vasc Access ; : 11297298221135621, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36349745

RESUMEN

Periadventitial biomaterials have been employed for nearly three decades to promote adaptive venous remodeling following hemodialysis vascular access creation in preclinical models and clinical trials. These systems are predicated on the combination of scaffolds, hydrogels, and/or particles with therapeutics (small molecules, proteins, genes, and cells) to prevent venous stenosis and subsequent maturation failure. Periadventitial biomaterial therapies have evolved from simple drug delivery vehicles for traditional drugs to more thoughtful designs tailored to the pathophysiology of access failure. The emergence of tissue engineering strategies and gene therapies are another exciting new direction. Despite favorable results in experimental and preclinical studies, no periadventitial therapy has been clinically approved to improve vascular access outcomes. After conducting an exhaustive review of the literature, we identify the seminal studies and clinical trials that utilize periadventitial biomaterials and discuss the key features of each biomaterial format and their respective shortcomings as they pertain to access maturation. This review provides a foundation from which clinicians, surgeons, biologists, and engineers can refer to and will hopefully inspire thoughtful, translatable treatments to finally address access failure.

17.
Front Cardiovasc Med ; 9: 1005030, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419492

RESUMEN

Background: Chronic kidney disease (CKD) is a highly comorbid condition with significant effects on vascular health and remodeling. Upper extremity veins are important in end-stage kidney disease (ESKD) due to their potential use to create vascular accesses. However, unlike arteries, the contribution of CKD-associated factors to the chronic remodeling of veins has been barely studied. Methods: We measured morphometric parameters in 315 upper extremity veins, 131 (85% basilic) from stage 5 CKD/ESKD patients and 184 (89% basilic) from non-CKD organ donors. Associations of demographic and clinical characteristics with intimal hyperplasia (IH) and medial fibrosis were evaluated using multivariate regression models. Results: The study cohort included 33% females, 30% blacks, 32% Hispanics, and 37% whites. Over 60% had hypertension, and 25% had diabetes independent of CKD status. Among kidney disease participants, 26% had stage 5 CKD, while 22 and 52% had ESKD with and without history of a previous arteriovenous fistula/graft (AVF/AVG), respectively. Intimal hyperplasia was associated with older age (ß = 0.13 per year, confidence interval [CI] = 0.002-0.26), dialysis vintage > 12 months (ß = 0.22, CI = 0.09-0.35), and previous AVF/AVG creation (ß = 0.19, CI = 0.06-0.32). Upper quartile values of IH were significantly associated with diabetes (odds ratio [OR] = 2.02, CI = 1.08-3.80), which demonstrated an additive effect with previous AVF/AVG history and longer vintage in exacerbating IH. Medial fibrosis also increased as a function of age (ß = 0.17, CI = 0.04-0.30) and among patients with diabetes (ß = 0.15, CI = 0.03-0.28). Age was the predominant factor predicting upper quartile values of fibrosis (OR = 1.03 per year, CI = 1.01-1.05) independent of other comorbidities. Conclusion: Age and diabetes are the most important risk factors for chronic development of venous IH and fibrosis independent of CKD status. Among kidney disease patients, longer dialysis vintage, and history of a previous AVF/AVG are strong predictors of IH.

18.
Clin Nephrol ; 98(5): 229-238, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36168799

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is common in end-stage renal disease (ESRD) patients and is associated with increased all-cause and cardiovascular mortality in this group. There is scarce data on the long-term effect of arteriovenous fistula (AVF) creation on pulmonary hypertension (PH) and the reflected changes in echocardiographic measurements. MATERIALS AND METHODS: This is a retrospective study of 54 patients who underwent AVF creation between 2009 and 2014 and with echocardiographic evaluations before and after surgery. We analyzed pairwise changes in right ventricular systolic pressure (RVSP), right atrial pressure (RAP) during systole, left ventricular mass (LVM), tricuspid regurgitation (TR), mitral E/E' ratio, and ejection fraction (EF), as well as the factors that predicted change in RVSP after surgery. RESULTS: The median time for the preoperative echocardiogram was 0.3 years (interquartile range (IQR) 0.2 - 0.7 years) prior to AVF creation, while the follow-up echo was done 1.3 (0.6 - 2.1) years after surgery. 67% of the patients had RVSP > 37 mmHg at baseline. There was a significant reduction in RVSP after AVF creation compared to baseline (median 33 (IQR 26 - 43) vs. 46 mmHg, p = 0.0015), with 59% of the patients experiencing a decrease and 19% remaining stable. There were also significant decreases in LVM (201 (143 - 256) vs. 215 (163 - 276), p = 0.045) and RAP systole (10 (10 - 15) vs. 3 (3 - 8); p < 0.001) after surgery. Higher preoperative weight (p = 0.038) and RVSP (p = 0.006), and use of loop diuretics (p = 0.015) were significantly associated with improvement in RVSP after AVF creation. CONCLUSION: Our results suggest that AVF creation is associated with a significant reduction or stable measurements of RVSP in the ESRD population, likely due to an improvement in volume status.


Asunto(s)
Fístula Arteriovenosa , Hipertensión Pulmonar , Fallo Renal Crónico , Humanos , Hipertensión Pulmonar/complicaciones , Estudios Retrospectivos , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Diálisis Renal/efectos adversos , Fallo Renal Crónico/complicaciones , Ecocardiografía , Fístula Arteriovenosa/complicaciones
20.
J Am Heart Assoc ; 11(16): e024581, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35929448

RESUMEN

Background Arteriovenous fistula (AVF) maturation failure is a main limitation of vascular access. Maturation is determined by the intricate balance between outward remodeling and intimal hyperplasia, whereby endothelial cell dysfunction, platelet aggregation, and vascular smooth muscle cell (VSMC) proliferation play a crucial role. von Willebrand Factor (vWF) is an endothelial cell-derived protein involved in platelet aggregation and VSMC proliferation. We investigated AVF vascular remodeling in vWF-deficient mice and vWF expression in failed and matured human AVFs. Methods and Results Jugular-carotid AVFs were created in wild-type and vWF-/- mice. AVF flow was determined longitudinally using ultrasonography, whereupon AVFs were harvested 14 days after surgery. VSMCs were isolated from vena cavae to study the effect of vWF on VSMC proliferation. Patient-matched samples of the basilic vein were obtained before brachio-basilic AVF construction and during superficialization or salvage procedure 6 weeks after AVF creation. vWF deficiency reduced VSMC proliferation and macrophage infiltration in the intimal hyperplasia. vWF-/- mice showed reduced outward remodeling (1.5-fold, P=0.002) and intimal hyperplasia (10.2-fold, P<0.0001). AVF flow in wild-type mice was incremental over 2 weeks, whereas flow in vWF-/- mice did not increase, resulting in a two-fold lower flow at 14 days compared with wild-type mice (P=0.016). Outward remodeling in matured patient AVFs coincided with increased local vWF expression in the media of the venous outflow tract. Absence of vWF in the intimal layer correlated with an increase in the intima-media ratio. Conclusions vWF enhances AVF maturation because its positive effect on outward remodeling outweighs its stimulating effect on intimal hyperplasia.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Miocitos del Músculo Liso , Factor de von Willebrand , Animales , Derivación Arteriovenosa Quirúrgica/métodos , Proliferación Celular , Humanos , Hiperplasia , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/citología , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...