Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 630(1-3): 112-20, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20006596

RESUMEN

We describe the pharmacological and pharmacokinetic profiles of SCH 486757, a nociceptin/orphanin FQ peptide (NOP) receptor agonist that has recently entered human clinical trials for cough. SCH 486757 selectively binds human NOP receptor (K(i)=4.6+/-0.61nM) over classical opioid receptors. In a guinea pig capsaicin cough model, SCH 486757 (0.01-1mg/kg) suppressed cough at 2, 4, and 6h post oral administration with a maximum efficacy occurring at 4h equivalent to codeine, hydrocodone, dextromethorphan and baclofen. The antitussive effects of SCH 486757 (3.0mg/kg, p.o.) was blocked by the NOP receptor antagonist J113397 (12mg/kg, i.p.) but not by naltrexone (10mg/kg, p.o.). SCH 486757 does not produce tolerance to its antitussive activity after a 5-day BID dosing regimen. After acute and chronic dosing paradigms, SCH 486757 (1mg/kg) inhibited capsaicin-evoked coughing by 46+/-9% and 40+/-11%, respectively. In a feline mechanically-evoked cough model, SCH 486757 produces a maximum inhibition of cough and expiratory abdominal electromyogram amplitude of 59 and 61%, respectively. SCH 486757 did not significantly affect inspiratory electromyogram amplitude. We examined the abuse potential of SCH 486757 (10mg/kg, p.o.) in a rat conditioned place preference procedure which is sensitive to classical drugs of abuse, such as amphetamine and morphine. SCH 486757 was without effect in this model. Finally, SCH 486757 displays a good oral pharmacokinetic profile in the guinea pig, rat and dog. We conclude that SCH 486757 has a favorable antitussive profile in preclinical animal models.


Asunto(s)
Antitusígenos/uso terapéutico , Tos/tratamiento farmacológico , Receptores Opioides/agonistas , Animales , Compuestos de Azabiciclo/farmacología , Gatos , Perros , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Cobayas , Masculino , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides/metabolismo , Receptor de Nociceptina
2.
J Mass Spectrom ; 43(4): 509-17, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18059003

RESUMEN

Posaconazole (SCH 56592) is a novel triazole antifungal drug that is marketed in Europe and the United States under the trade name 'Noxafil' for prophylaxis against invasive fungal infections. SCH 56592 was discovered as a possible active metabolite of SCH 51048, an earlier lead. Initial studies have shown that serum concentrations determined by a microbiological assay were higher than those determined by HPLC from animals dosed with SCH 51048. Subsequently, several animals species were dosed with (3)H-SCH 51048 and the serum was analyzed for total radioactivity, SCH 51048 concentration and antifungal activity. The antifungal activity was higher than that expected based on SCH 51048 serum concentrations, confirming the presence of active metabolite(s). Metabolite profiling of serum samples at selected time intervals pinpointed the peak that was suspected to be the active metabolite. Consequently, (3)H-SCH 51048 was administered to a large group of mice, the serum was harvested and the metabolite was isolated by extraction and semipreparative HPLC. LC-MS/MS analysis suggested that the active metabolite is a secondary alcohol with the hydroxyl group in the aliphatic side chain of SCH 51048. All corresponding monohydroxylated diastereomeric mixtures were synthesized and characterized. The HPLC retention time and LC-MS/MS spectra of the diastereomeric secondary alcohols of SCH 51048 were similar to those of the isolated active metabolite. Finally, all corresponding individual monohydroxylated diasteriomers were synthesized and evaluated for in vitro and in vivo antifungal potencies, as well as pharmacokinetics. SCH 56592 emerged as the candidate with the best overall profile.


Asunto(s)
Antifúngicos/análisis , Antifúngicos/farmacocinética , Espectrometría de Masas , Triazoles/análisis , Triazoles/farmacocinética , Animales , Antifúngicos/sangre , Cromatografía Líquida de Alta Presión , Perros , Diseño de Fármacos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos , Conejos , Triazoles/sangre
3.
Rapid Commun Mass Spectrom ; 17(8): 832-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12672138

RESUMEN

A new triple-quadrupole mass spectrometry (MS) system with enhanced resolution capabilities has recently become available. In order to evaluate the performance of this new instrument for drug discovery assays, both the linearity and the limit of detection were compared in the positive electrospray ionization (ESI) mode with those of a conventional triple-quadrupole instrument supplied by the same manufacturer. For these studies, spiked mouse plasma standard samples were split and assayed by each instrument, which allowed for a direct comparison of the two systems. In the unit mass resolution mode, the new mass spectrometer was found to be at least ten-fold more sensitive than the conventional instrument. The sensitivity of the new mass spectrometer under the enhanced mass resolution mode was found to be even better by another factor of two. For the test compound, the linear dynamic range was found to be 0.05-5000 ng/mL for the new instrument as compared with 2.5-5000 ng/mL for the conventional mass spectrometer.


Asunto(s)
Espectrometría de Masas/instrumentación , Plasma/química , Animales , Calibración , Espectrometría de Masas/métodos , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...