Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 44(12): 3545-3562, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34558681

RESUMEN

In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM-containing Receptor-Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2, is currently not known. Here we show that CERK1, LYK2 and LYK5 are dispensable for basal susceptibility to B. cinerea but are necessary for chitin-induced resistance to this pathogen. LYK2 is dispensable for chitin perception and early signalling events, though it contributes to callose deposition induced by this elicitor. Notably, LYK2 is also necessary for enhanced resistance to B. cinerea and Pseudomonas syringae induced by flagellin and for elicitor-induced priming of defence gene expression during fungal infection. Consistently, overexpression of LYK2 enhances resistance to B. cinerea and P. syringae and results in increased expression of defence-related genes during fungal infection. LYK2 appears to be required to establish a primed state in plants exposed to biotic elicitors, ensuring a robust resistance to subsequent pathogen infections.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/fisiología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
2.
Plants (Basel) ; 9(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353085

RESUMEN

Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW-1 (1.67 Units g DW-1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.

3.
ACS Synth Biol ; 9(10): 2840-2850, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32916053

RESUMEN

In Chlamydomonas reinhardtii, the model organism for eukaryotic green algae and plants, the processes of nuclear transformation and genome editing in particular are still marked by a low level of efficiency, and so intensive work is required in order to create and identify mutants for the investigation of basic physiological processes, as well as the implementation of biotechnological applications. In this work, we show that cell synchronization during the stages of the cell cycle, obtained from long-term cultivation under specific growth conditions, greatly enhances the efficiency of transformation and allows the identification of DNA repair mechanisms that occur preferentially at different stages of the cell cycle. We demonstrate that the transformation of synchronized cells at different times was differentially associated with nonhomologous end joining (NHEJ) and/or homologous recombination (HR), and makes it possible to knock-in specific foreign DNA at the genomic nuclear location desired by exploiting HR. This optimization greatly reduces the overall complexity of the genome editing procedure and creates new opportunities for altering genes and their products.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Ciclo Celular/genética , Núcleo Celular/genética , Chlamydomonas reinhardtii/genética , Reparación del ADN por Unión de Extremidades/genética , Edición Génica/métodos , Genoma de Planta , Recombinación Homóloga , Transformación Genética , Proteínas de Cloroplastos/genética , Técnicas de Inactivación de Genes , Proteínas de la Membrana/genética , Proteínas de Plantas/genética
4.
Plants (Basel) ; 9(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947868

RESUMEN

Sunlight energy largely exceeds the energy required by anthropic activities, and therefore its exploitation represents a major target in the field of renewable energies. The interest in the mass cultivation of green microalgae has grown in the last decades, as algal biomass could be employed to cover a significant portion of global energy demand. Advantages of microalgal vs. plant biomass production include higher light-use efficiency, efficient carbon capture and the valorization of marginal lands and wastewaters. Realization of this potential requires a decrease of the current production costs, which can be obtained by increasing the productivity of the most common industrial strains, by the identification of factors limiting biomass yield, and by removing bottlenecks, namely through domestication strategies aimed to fill the gap between the theoretical and real productivity of algal cultures. In particular, the light-to-biomass conversion efficiency represents one of the major constraints for achieving a significant improvement of algal cell lines. This review outlines the molecular events of photosynthesis, which regulate the conversion of light into biomass, and discusses how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. This review highlights the most recent results in the manipulation of the fundamental mechanisms of algal photosynthesis, which revealed that a significant yield enhancement is feasible. Moreover, metabolic engineering of microalgae, focused upon the development of renewable fuel biorefineries, has also drawn attention and resulted in efforts for enhancing productivity of oil or isoprenoids.

5.
J Biotechnol ; 296: 42-52, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30885654

RESUMEN

The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-ß-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-ß-xylanase (XynA), endo-1,4-ß-mannanase (ManB/Man5A) and ß-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.


Asunto(s)
Celulasa/química , Glicósido Hidrolasas/química , Lignina/química , Polisacáridos/química , Biocombustibles , Biomasa , Celulasa/genética , Estabilidad de Enzimas/genética , Escherichia coli/genética , Fermentación , Glicósido Hidrolasas/genética , Hidrólisis/efectos de los fármacos , Polisacáridos/genética , Temperatura , Thermotoga neapolitana/enzimología , Thermotoga neapolitana/genética
6.
Microb Cell Fact ; 17(1): 173, 2018 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-30414618

RESUMEN

Interest in bulk biomass from microalgae, for the extraction of high-value nutraceuticals, bio-products, animal feed and as a source of renewable fuels, is high. Advantages of microalgal vs. plant biomass production include higher yield, use of non-arable land, recovery of nutrients from wastewater, efficient carbon capture and faster development of new domesticated strains. Moreover, adaptation to a wide range of environmental conditions evolved a great genetic diversity within this polyphyletic group, making microalgae a rich source of interesting and useful metabolites. Microalgae have the potential to satisfy many global demands; however, realization of this potential requires a decrease of the current production costs. Average productivity of the most common industrial strains is far lower than maximal theoretical estimations, suggesting that identification of factors limiting biomass yield and removing bottlenecks are pivotal in domestication strategies aimed to make algal-derived bio-products profitable on the industrial scale. In particular, the light-to-biomass conversion efficiency represents a major constraint to finally fill the gap between theoretical and industrial productivity. In this respect, recent results suggest that significant yield enhancement is feasible. Full realization of this potential requires further advances in cultivation techniques, together with genetic manipulation of both algal physiology and metabolic networks, to maximize the efficiency with which solar energy is converted into biomass and bio-products. In this review, we draft the molecular events of photosynthesis which regulate the conversion of light into biomass, and discuss how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. We outline major successes reached, and promising strategies to achieving significant contributions to future microalgae-based biotechnology.


Asunto(s)
Biomasa , Biotecnología , Microalgas/metabolismo , Ingeniería Genética , Fotosíntesis
7.
Food Chem ; 263: 180-185, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29784305

RESUMEN

A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site.


Asunto(s)
Arsénico/análisis , Técnicas de Química Analítica/métodos , Oryza/química , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Malaui , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...