Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 6(1): 219, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828292

RESUMEN

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

2.
Nature ; 619(7969): 385-393, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407816

RESUMEN

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , ADN , Histonas , Factores de Transcripción ARNTL/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/genética , ADN/metabolismo , Secuencias Hélice-Asa-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación Alostérica , Leucina Zippers , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Multimerización de Proteína
3.
ACS Chem Neurosci ; 13(13): 2060-2077, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731924

RESUMEN

The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 µM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 µM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.


Asunto(s)
Cristalografía por Rayos X
4.
J Med Chem ; 65(10): 7212-7230, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35536179

RESUMEN

Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.


Asunto(s)
Inhibidores Enzimáticos , Esterasas , Encéfalo/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Esterasas/metabolismo , Vía de Señalización Wnt
5.
J Med Chem ; 63(21): 12942-12956, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124429

RESUMEN

Carboxylesterase Notum is a negative regulator of the Wnt signaling pathway. There is an emerging understanding of the role Notum plays in disease, supporting the need to discover new small-molecule inhibitors. A crystallographic X-ray fragment screen was performed, which identified fragment hit 1,2,3-triazole 7 as an attractive starting point for a structure-based drug design hit-to-lead program. Optimization of 7 identified oxadiazol-2-one 23dd as a preferred example with properties consistent with drug-like chemical space. Screening 23dd in a cell-based TCF/LEF reporter gene assay restored the activation of Wnt signaling in the presence of Notum. Mouse pharmacokinetic studies with oral administration of 23dd demonstrated good plasma exposure and partial blood-brain barrier penetration. Significant progress was made in developing fragment hit 7 into lead 23dd (>600-fold increase in activity), making it suitable as a new chemical tool for exploring the role of Notum-mediated regulation of Wnt signaling.


Asunto(s)
Inhibidores Enzimáticos/química , Esterasas/antagonistas & inhibidores , Oxadiazoles/química , Administración Oral , Animales , Sitios de Unión , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Esterasas/metabolismo , Semivida , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Oxadiazoles/farmacocinética , Oxadiazoles/farmacología , Relación Estructura-Actividad , Vía de Señalización Wnt/efectos de los fármacos
6.
J Med Chem ; 63(17): 9464-9483, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787107

RESUMEN

The Wnt family of proteins are secreted signaling proteins that play key roles in regulating cellular functions. Recently, carboxylesterase Notum was shown to act as a negative regulator of Wnt signaling by mediating the removal of an essential palmitoleate. Here we disclose two new chemical scaffolds that inhibit Notum enzymatic activity. Our approach was to create a fragment library of 250 acids for screening against Notum in a biochemical assay followed by structure determination by X-ray crystallography. Twenty fragments were identified as hits for Notum inhibition, and 14 of these fragments were shown to bind in the palmitoleate pocket of Notum. Optimization of 1-phenylpyrrole 20, guided by structure-based drug design, identified 20z as the most potent compound from this series. Similarly, the optimization of 1-phenylpyrrolidine 8 gave acid 26. This work demonstrates that inhibition of Notum activity can be achieved by small, drug-like molecules possessing favorable in vitro ADME profiles.


Asunto(s)
Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirroles/química , Pirroles/farmacología , Pirrolidinas/química , Pirrolidinas/farmacología , Hidrolasas de Éster Carboxílico/química , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Conformación Proteica
7.
Nature ; 585(7823): 85-90, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699409

RESUMEN

A relatively small number of proteins have been suggested to act as morphogens-signalling molecules that spread within tissues to organize tissue repair and the specification of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1-3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specific chaperone, have been proposed to overcome this so-called Wnt solubility problem4-6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defined by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors.


Asunto(s)
Glipicanos/química , Glipicanos/metabolismo , Lípidos , Transducción de Señal , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Glipicanos/clasificación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Masculino , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Dominios Proteicos , Transporte de Proteínas , Solubilidad , Proteína Wnt1/química , Proteína Wnt1/metabolismo
8.
Medchemcomm ; 10(8): 1361-1369, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534655

RESUMEN

NOTUM is a carboxylesterase that has been shown to act by mediating the O-depalmitoleoylation of Wnt proteins resulting in suppression of Wnt signaling. Here, we describe the development of NOTUM inhibitors that restore Wnt signaling for use in in vitro disease models where NOTUM over activity is an underlying cause. A crystallographic fragment screen with NOTUM identified 2-phenoxyacetamide 3 as binding in the palmitoleate pocket with modest inhibition activity (IC50 33 µM). Optimization of hit 3 by SAR studies guided by SBDD identified indazole 38 (IC50 0.032 µM) and isoquinoline 45 (IC50 0.085 µM) as potent inhibitors of NOTUM. The binding of 45 to NOTUM was rationalized through an X-ray co-crystal structure determination which showed a flipped binding orientation compared to 3. However, it was not possible to combine NOTUM inhibition activity with metabolic stability as the majority of the compounds tested were rapidly metabolized in an NADPH-independent manner.

9.
Mini Rev Med Chem ; 13(10): 1398-406, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23815578

RESUMEN

Anti-angiogenic therapy represents a very promising approach in cancer treatment, as most tumors needs to be supplied by a functional vascular network in order to grow beyond the local boundaries and metastatize. The accessibility of vessels to drug delivery and the broad spectrum of cancers treatable with the same compound have arisen interest in research of suitable molecules, with several, especially targeting the VEGF pathway, entered in clinical trials and approved by the Food and Drug Administration. Despite good results, the major hurdle resides in the limited duration of an effective clinical response before tumors start to grow again. Thus, researchers are looking for different alternative targets for a combined and parallel multi-targeting of angiogenic signaling circuits. Activin Receptor-like kinase 1 (ALK1) is a TGF-ß type I receptor with high affinity for the BMP9 member of Bone Morphogenic Proteins superfamily: it is expressed mainly, even if not exclusively, on endothelial cells and seems to be involved in the regulatory phase of angiogenesis. Despite a non-completely elucidated mechanism, the targeting of this pathway, both by a soluble ALK1-Fc receptor developed by Acceleron Pharma and by a fully human monoclonal antibody developed by Pfizer, has achieved encouraging results. After having briefly summarized the state of the art of anti-angiogenic therapy, we will first review existing evidence about the molecular mechanisms of ALK1 signaling and we will then analyse in detail the pre-clinical and clinical data available about these two drugs.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Neovascularización Patológica/tratamiento farmacológico , Receptores de Activinas Tipo II/metabolismo , Inhibidores de la Angiogénesis/química , Humanos , Modelos Moleculares , Transducción de Señal/efectos de los fármacos
10.
J Immunother ; 34(9): 611-28, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21989410

RESUMEN

Antibody-drug conjugates (also known as "immunoconjugates") have only recently entered the arsenal of anticancer drugs, but the number of undergoing clinical trials including them is ever increasing and most therapeutic antibodies are now patented including their potential immunoconjugate derivatives. They typically consist of three components: antibody, linker, and cytotoxin. An antibody or antibody fragment targeted to a tumor-associated antigen acts as a carrier for drug delivery and can be conjugated by cleavable or uncleavable linkers to a variety of effector molecules, either a drug, toxin, radioisotope, enzyme (the latter also used in Antibody-Directed Enzyme Prodrug Therapy), or to drug-containing liposomes or nanoparticles. In this review, we propose a general outline of the field, starting from the diagnostic and clinical applications of this class of molecules. Special attention will be devoted to the principles and issues in molecular design (choice of tumor-associated antigen, critical milestones in antibody development, available alternatives for linkers and effector molecule, and strategies for fusion proteins building) to the importance of antibody affinity modulation to optimize therapeutic effect and the potential of emerging alternative scaffolds. Most of the power of these molecules is to reach high concentrations in the tumor, relatively unaffecting normal cells, although one drawback lies in their short half-life. In this respect, modifications of immunoconjugates, which have shown to strongly influence pharmacokinetics, like glycosylation and PEGylation, will be discussed. Undergoing clinical trials and active patents will be analyzed and problems present in clinical use will be reported.


Asunto(s)
Inmunoconjugados/uso terapéutico , Inmunoterapia , Neoplasias/tratamiento farmacológico , Animales , Antígenos de Neoplasias/inmunología , Ensayos Clínicos como Asunto , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Humanos , Inmunoconjugados/genética , Inmunoconjugados/inmunología , Inmunoconjugados/metabolismo , Fragmentos de Inmunoglobulinas/inmunología , Inmunoterapia/tendencias , Liposomas , Terapia Molecular Dirigida , Nanopartículas , Neoplasias/inmunología , Ingeniería de Proteínas , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...