Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Appl Acarol ; 92(4): 759-775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512422

RESUMEN

Citrus leprosis is the most important viral disease affecting citrus. The disease is caused predominantly by CiLV-C and is transmitted by Brevipalpus yothersi Baker mites. This study brings some insight into the colonization of B. yothersi in citrus [(Citrus × sinensis (L.) Osbeck (Rutaceae)] previously infested by viruliferous or non-viruliferous B. yothersi. It also assesses the putative role of shelters on the behavior of B. yothersi. Expression of PR1 and PR4 genes, markers of plant defense mechanisms, were evaluated by RT-qPCR to correlate the role of the plant hormonal changes during the tri-trophic virus-mite-plant interplay. A previous infestation with either non-viruliferous and viruliferous mites positively influenced oviposition and the number of adult individuals in the resulting populations. Mite populations were higher on branches that had received a previous mite infestation than branches that did not. There was an increase in the expression of PR4, a marker gene in the jasmonic acid (JA) pathway, in the treatment with non-viruliferous mites, indicating a response from the plant to their feeding. Conversely, an induced expression of PR1, a marker gene in the salicylic acid (SA) pathway, was observed mainly in the treatment with viruliferous mites, which suggests the activation of a plant response against the pathogen. The earlier mite infestation, as well as the presence of leprosis lesions and a gypsum mixture as artificial shelters, all fostered the growth of the B. yothersi populations after the second infestation, regardless of the presence or absence of CiLV-C. Furthermore, it is suggested that B. yothersi feeding actually induces the JA pathway in plants. At the same time, the CiLV-C represses the JA pathway and induces the SA pathway, which benefits the mite vector.


Asunto(s)
Citrus sinensis , Ácaros , Animales , Ácaros/fisiología , Enfermedades de las Plantas/parasitología , Femenino , Infestaciones por Ácaros/veterinaria , Infestaciones por Ácaros/parasitología , Oviposición
2.
Sci Rep ; 11(1): 9886, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972648

RESUMEN

The weeds are important in agricultural and livestock areas because these plants can cause several damages, especially in the yield. The herbicide pulverization for weed control is the most used, but the efficiency of the control can be dependent the several factors, for example, the correct chose the herbicide and the mixture or not with adjuvant. This study aimed to evaluate the contact angle of herbicide solution droplets associated with adjuvant when deposited on the leaf surface of different weed species and their relationship with chemical control. For the contact angle experiment, the design was completely randomized, with four repetitions, while for the control experiment, a randomized block design was used, both experiments were arranged in a factorial (4 × 2 + 1) design. Factor A corresponded to four spray solutions containing the herbicide no addition of adjuvants and herbicide associated with adjuvants (vegetable oil, mineral oil, and lecithin), factor B to two herbicide dosages, and additional treatment corresponded to water. The contact angle was determined in six weed species: Crotalaria incana, Lantana camara, Ipomoea grandifolia, Asclepias curassavica, Sida obtusifolia, and Ricinus communis, on the adaxial and abaxial surface of each species, and an artificial surface. For the weed control experiment was used two weed species: C. incana and L. camara. The multivariate analysis allowed the understanding of the behavior of the contact angle of the different groups on the natural and artificial surfaces, due to the formation of factors. For all plants, except for the abaxial surface of I. grandifolia and the adaxial surface of A. curassavica, the association of herbicide and adjuvants reduced contact angle on the surfaces. The chemical control resulted in an indirect relation with contact angle, where smaller contact angles of the herbicide solution resulted in a higher percentage of plant intoxication. Therefore, for this situation, it is recommended to use the herbicide aminopyralid + fluroxypir associated with lecithin.


Asunto(s)
Productos Agrícolas/parasitología , Herbicidas/administración & dosificación , Malezas/efectos de los fármacos , Control de Malezas/métodos , Hojas de la Planta
3.
Pest Manag Sci ; 75(7): 1855-1865, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30653814

RESUMEN

BACKGROUND: Botanical compounds from plant species are known to have pesticidal activity and have been used in integrated pest management programs. The varied spectrum of the pesticidal action of these compounds can also avoid selection of resistance in pest populations. In this study, mixtures of the botanical compounds geraniol, eugenol and cinnamaldehyde were encapsulated in zein nanoparticles to improve their stability and efficiency. Biological effects of the nano-scale formulations of the botanical compounds were evaluated against two agricultural pests: the two-spotted spider mite (Tetranychus urticae) and the soybean looper (Chrysodeixis includes). RESULTS: The formulations were stable over time (120 days) with a high encapsulation efficiency (>90%). Nanoencapsulation also provided protection against degradation of the compounds during storage and led to a decrease in toxicity to non-target organisms. The release of the compounds (especially eugenol and cinnamaldehyde) from the nanoparticles was directly influenced by temperature, and the main mechanism of release was through a diffusion-based process. Nanoencapsulated compounds also showed superior efficiency compared to the emulsified compounds in terms of repellency and insecticidal activity. CONCLUSION: The findings of this study indicate that the convergence of botanical compounds with nano-scale formulation has the potential to improve efficacy for their sustainable use in integrated pest management in agriculture. © 2019 Society of Chemical Industry.


Asunto(s)
Acaricidas , Insecticidas , Mariposas Nocturnas/efectos de los fármacos , Nanopartículas/química , Tetranychidae/efectos de los fármacos , Zeína/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacología , Monoterpenos Acíclicos , Animales , Línea Celular , Cricetulus , Portadores de Fármacos , Eugenol/química , Eugenol/farmacología , Larva/efectos de los fármacos , Ratones , Temperatura , Terpenos/química , Terpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...