Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 27: 239-243, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34700053

RESUMEN

OBJECTIVES: Here we report the draft genome sequence of Staphylococcus agnetis 4244, a strain involved in bovine mastitis, and its ability to inhibit different species of antibiotic-resistant Gram-positive bacteria owing to bacteriocin production. METHODS: An Illumina MiSeq platform was used for genome sequencing. De novo genome assembly was done using the A5-miseq pipeline. Genome annotation was performed by the RAST server, and mining of bacteriocinogenic gene clusters was done using the BAGEL4 and antiSMASH v.5.0 platforms. Investigation of the spectrum of activity of S. agnetis 4244 was performed on BHI agar by deferred antagonism assay. RESULTS: The total scaffold size was determined to be 2 511 708 bp featuring a G+C content of 35.6%. The genome contains 2431 protein-coding sequences and 80 RNA sequences. Genome analyses revealed three prophage sequences inserted in the genome as well as several genes involved in drug resistance and two bacteriocin gene clusters (encoding a thiopeptide and a sactipeptide) encoded on the bacterial chromosome. Staphylococcus agnetis 4244 was able to inhibit all 44 strains of antibiotic-resistant Gram-positive bacteria tested in this study, including vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and other antibiotic-resistant staphylococcal strains. CONCLUSION: This study emphasises the potential biotechnological application of this strain for production of bacteriocins that could be used in the food industry as biopreservatives and/or in medicine as alternative therapeutic options against VRE, MRSA, vancomycin-intermediate S. aureus and other antibiotic-resistant Gram-positive bacteria, including biofilm-forming isolates. It also provides some genetic features of the draft genome of S. agnetis 4244.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Péptidos Antimicrobianos , Bovinos , Femenino , Staphylococcus aureus Resistente a Meticilina/genética , Familia de Multigenes , Staphylococcus , Staphylococcus aureus/genética
2.
Clin Immunol ; 226: 108713, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711450

RESUMEN

Current chemical therapies for Chagas Disease (CD) lack ability to clear Trypanosoma cruzi (Tc) parasites and cause severe side effects, making search for new strategies extremely necessary. We evaluated the action of Tityus serrulatus venom (TsV) components during Tc infection. TsV treatment increased nitric oxide and pro-inflammatory cytokine production by Tc-infected macrophages (MØ), decreased intracellular parasite replication and trypomastigotes release, also triggering ERK1/2, JNK1/2 and p38 activation. Ts7 demonstrated the highest anti-Tc activity, inducing high levels of TNF and IL-6 in infected MØ. TsV/Ts7 presented synergistic effect on p38 activation when incubated with Tc antigen. KPP-treatment of MØ also decreased trypomastigotes releasing, partially due to p38 activation. TsV/Ts7-pre-incubation of Tc demonstrated a direct effect on parasite decreasing MØ-trypomastigotes releasing. In vivo KPP-treatment of Tc-infected mice resulted in decreased parasitemia. Summarizing, this study opens perspectives for new bioactive molecules as CD-therapeutic treatment, demonstrating the TsV/Ts7/KPP-trypanocidal and immunomodulatory activity during Tc infection.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Inmunomodulación/efectos de los fármacos , Venenos de Escorpión/farmacología , Escorpiones/metabolismo , Animales , Enfermedad de Chagas/metabolismo , Femenino , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Factores de Necrosis Tumoral/metabolismo
3.
J Proteome Res ; 19(8): 3467-3477, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597192

RESUMEN

Cryptic peptides (cryptides) are biologically active peptides formed after proteolysis of native precursors present in animal venoms, for example. Proteolysis is an overlooked post-translational modification that increases venom complexity. The tripeptide KPP (Lys-Pro-Pro) is a peptide encrypted in the C-terminus of Ts14-a 25-mer peptide from the venom of the Tityus serrulatus scorpion that has a positive impact on the cardiovascular system, inducing vasodilation and reducing arterial blood pressure of hypertensive rats among other beneficial effects. A previous study reported that KPP and its native peptide Ts14 act via activation of the bradykinin receptor B2 (B2R). However, the cellular events underlying the activation of B2R by KPP are unknown. To study the cell signaling triggered by the Ts14 cryptide KPP, we incubated cardiac myocytes isolated from C57BL/6 mice with KPP (10-7 mol·L-1) for 0, 5, or 30 min and explored the proteome and phosphoproteome. Our results showed that KPP regulated cardiomyocyte proteins associated with, but not limited to, apoptosis, muscle contraction, protein turnover, and the respiratory chain. We also reported that KPP led to AKT phosphorylation, activating AKT and its downstream target nitric oxide synthase. We also observed that KPP led to dephosphorylation of phospholamban (PLN) at its activation sites (S16 and T17), leading to reduced contractility of treated cardiomyocytes. Some cellular targets reported here for KPP (e.g., AKT, PLN, and ERK) have already been reported to protect the cardiac tissue from hypoxia-induced injury. Hence, this study suggests potential beneficial effects of this scorpion cryptide that needs to be further investigated, for example, as a drug lead for cardiac infarction.


Asunto(s)
Venenos de Escorpión , Animales , Proteínas de Unión al Calcio , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-akt , Ratas , Venenos de Escorpión/farmacología , Transducción de Señal
4.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327520

RESUMEN

Bacillus licheniformis SMIA-2, a thermophilic and thermostable enzyme-producing bacterium, is found to be active against several strains of Staphylococcus aureus and several Bacillus species. Here, we report the 4.30-Mbp draft genome and bioinformatic predictions supporting gene inventories for amylase, protease, cellulase, xylanase, and antimicrobial compound biosynthesis.

5.
Int J Food Microbiol ; 173: 81-8, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24412962

RESUMEN

Carnobacterium maltaromaticum C2, isolated from Brazilian smoked fish (Surubim, Pseudoplatystoma sp.), was found to exert antimicrobial activity against Listeria monocytogenes, an important foodborne pathogen. In this study, the bacteriocins produced by C. maltaromaticum C2 were purified via an extraction with XAD-16 resin, a C18 solid phase extraction, followed by reversed-phase fast protein liquid chromatography. The purified active fractions were characterized using tandem mass spectrometry, permitting the identification of multiple bacteriocins. Carnobacteriocins BM1, B1, and a variant of carnobacteriocin B2 were all found, providing much of the antilisterial activity. Additionally, we herein report the first isolation of the previously predicted antimicrobial peptide carnobacteriocin X. Moreover, C. maltaromaticum C2 produces a novel two-component lantibiotic, termed carnolysin, homologous to enterococcal cytolysin. This lantibiotic is antimicrobially inactive when tested against the non-bacteriocinogenic strain C. maltaromaticum A9b-, likely requiring an additional proteolytic cleavage to reach maturity.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacteriocinas/farmacología , Carnobacterium/química , Listeria monocytogenes/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Bacteriocinas/química , Bacteriocinas/aislamiento & purificación , Brasil , Peces/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA