Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(5): e1026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733265

RESUMEN

Nuclear factor-κB (NF-κB) is a crucial pro-inflammatory transcription factor whose activation is of immense interest to immunology research. Estimation of NF-κB activation through flow cytometry is not possible due to the unavailability of robust flow cytometry antibodies that can bind to its phosphorylated, active, nuclear form. In this protocol, we describe a flow cytometry assay that measures the activation of the pro-inflammatory transcription factor NF-κB in stimulated immune cells by quantifying the degradation of its upstream regulator IκBα. We demonstrate the utility of this protocol by assessment of intracellular IκBα in human primary regulatory T cells experiencing TNFR2 agonism, a process previously reported to activate NF-κB in these cells. We also show that this assay may be applied to study NF-κB activation in other cell types, such as human primary T cells and THP-1 cell-derived macrophages, when induced by their corresponding inflammatory cues. Thus, this robust and reproducible protocol will be of interest to a wide range of scientists who aim to measure NF-κB activity in medium-to-high-throughput assays. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantifying inflammatory activation by flow cytometry of IκBα degradation Support Protocol 1: Isolating and expanding human regulatory T cells Support Protocol 2: Calculating IC50 from flow cytometry data using Excel.


Asunto(s)
Citometría de Flujo , Inhibidor NF-kappaB alfa , FN-kappa B , Humanos , Citometría de Flujo/métodos , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteolisis , Células THP-1 , Macrófagos/metabolismo , Macrófagos/inmunología
2.
Sci Signal ; 16(783): eadc9656, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130167

RESUMEN

Innate immune cells are responsible for eliminating foreign infectious agents and cellular debris, and their ability to perceive, respond to, and integrate biochemical and mechanical cues from their microenvironment eventually determines their behavior. In response to tissue injury, pathogen invasion, or a biomaterial implant, immune cells activate many pathways to initiate inflammation in the tissue. In addition to common inflammatory pathways, studies have demonstrated the role of the mechanosensitive proteins and transcriptional coactivators YAP and TAZ (YAP/TAZ) in inflammation and immunity. We review our knowledge of YAP/TAZ in controlling inflammation and immunity in innate immune cells. Furthermore, we discuss the roles of YAP/TAZ in inflammatory diseases, wound healing, and tissue regeneration and how they integrate mechanical cues with biochemical signaling during disease progression. Last, we comment on possible approaches that can be exploited to harness the therapeutic potential of YAP/TAZ in inflammatory diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Inflamación , Inmunidad Innata
3.
Biomaterials ; 279: 121236, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34753038

RESUMEN

Macrophages are mechanosensitive cells that can exquisitely fine-tune their function in response to their microenvironment. While macrophage polarization results in concomitant changes in cell morphology and epigenetic reprogramming, how biophysically-induced signaling cascades contribute to gene regulatory programs that drive polarization remains unknown. We reveal a cytoskeleton-dependent Src-H3 acetylation (H3Ac) axis responsible for inflammation-associated histone hyperacetylation. Inflammatory stimuli caused increases in traction forces, Src activity and H3Ac marks in macrophages, accompanied by reduced cell elongation and motility. These effects were curtailed following disruption of H3Ac-signaling through either micropattern-induced cell elongation or inhibition of H3Ac readers (BRD proteins) directly. Src activation relieves the suppression of p300 histone acetyltransferase (HAT) activity by PKCδ. Furthermore, while inhibition of Src reduced p300 HAT activity and H3Ac marks globally, local H3Ac levels within the Src promoter were increased, suggesting H3Ac regulates Src levels through feedback. Together, our study reveals an adhesome-to-epigenome regulatory nexus underlying macrophage mechanosensation, where Src modulates H3Ac-associated epigenetic signaling as a means of tuning inflammatory gene activity and macrophage fate decisions in response to microenvironmental cues.


Asunto(s)
Histona Acetiltransferasas , Histonas , Acetilación , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Transducción de Señal
4.
Nat Commun ; 12(1): 3256, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059671

RESUMEN

Macrophages perform diverse functions within tissues during immune responses to pathogens and injury, but molecular mechanisms by which physical properties of the tissue regulate macrophage behavior are less well understood. Here, we examine the role of the mechanically activated cation channel Piezo1 in macrophage polarization and sensing of microenvironmental stiffness. We show that macrophages lacking Piezo1 exhibit reduced inflammation and enhanced wound healing responses. Additionally, macrophages expressing the transgenic Ca2+ reporter, Salsa6f, reveal that Ca2+ influx is dependent on Piezo1, modulated by soluble signals, and enhanced on stiff substrates. Furthermore, stiffness-dependent changes in macrophage function, both in vitro and in response to subcutaneous implantation of biomaterials in vivo, require Piezo1. Finally, we show that positive feedback between Piezo1 and actin drives macrophage activation. Together, our studies reveal that Piezo1 is a mechanosensor of stiffness in macrophages, and that its activity modulates polarization responses.


Asunto(s)
Materiales Biocompatibles/efectos adversos , Reacción a Cuerpo Extraño/inmunología , Canales Iónicos/metabolismo , Macrófagos/inmunología , Cicatrización de Heridas/inmunología , Actinas/metabolismo , Animales , Células Cultivadas , Microambiente Celular/inmunología , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Femenino , Humanos , Canales Iónicos/genética , Activación de Macrófagos , Macrófagos/metabolismo , Masculino , Mecanotransducción Celular/inmunología , Ratones , Cultivo Primario de Células , Tejido Subcutáneo/cirugía
5.
Bioengineering (Basel) ; 9(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35049711

RESUMEN

Macrophages are innate immune cells that help wounds heal. Here, we study the potential immunomodulatory effects of negative-pressure wound therapy (NPWT) materials on the macrophage inflammatory response. We compared the effects of two materials, Granufoam™ (GF) and Veraflo Cleanse™ (VC), on macrophage function in vitro. We find that both materials cause reduced expression of inflammatory genes, such as TNF and IL1B, in human macrophages stimulated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFNγ). Relative to adherent glass control surfaces, VC discourages macrophage adhesion and spreading, and may potentially sequester LPS/IFNγ and cytokines that the cells produce. GF, on the other hand, was less suppressive of inflammation, supported macrophage adhesion and spreading better than VC, and sequestered lesser quantities of LPS/IFNγ in comparison to VC. The control dressing material cotton gauze (CT) was also immunosuppressive, capable of TNF-α retention and LPS/IFNγ sequestration. Our findings suggest that NPWT material interactions with cells, as well as soluble factors including cytokines and LPS, can modulate the immune response, independent of vacuum application. We have also established methodological strategies for studying NPWT materials and reveal the potential utility of cell-based in vitro studies for elucidating biological effects of NPWT materials.

6.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33277245

RESUMEN

Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease.


Asunto(s)
Mecanotransducción Celular , Proteínas Señalizadoras YAP , Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos , Mecanotransducción Celular/fisiología
7.
Curr Tissue Microenviron Rep ; 1(4): 277-300, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33817661

RESUMEN

PURPOSE OF REVIEW: The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS: Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY: This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.

9.
Colloids Surf B Biointerfaces ; 165: 92-102, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471220

RESUMEN

We have developed a novel hydrogel composed of konjac glucomannan (KGM), human hair proteins (KER), and an ethanolic extract of Avena sativa (OAT) and evaluated its potential as a dressing material for diabetic wounds. KGM is an excellent biocompatible gelling agent that stimulates fibroblast proliferation and immunomodulation. Human hair proteins (KER) are biocompatible, biodegradable, and possess abundant cell adhesion sites. KER also promotes fibroblast attachment and proliferation, keratinocyte migration, and collagen expression, which can accelerate wound healing. OAT consists of oat ß-glucans and several anti-inflammatory and antioxidant moieties that can reduce prolonged inflammation in chronic wounds. SEM images confirm the highly porous architecture of the scaffolds. When immersed in PBS, KGM+KER+OAT hydrogels absorb 7.5 times their dry weight. These hydrogels display a measured rate of degradation in lysozyme. KGM+KER+OAT hydrogels showed no significant cytotoxicity against NIH/3T3 fibroblasts. DAPI and SEM images obtained after 48h of cell culture illustrate the attachment and infiltration of fibroblasts. In vivo studies performed using a diabetic rat excision wound model showed that KGM+KER+OAT hydrogels significantly accelerated wound healing compared to the control and the KGM+KER hydrogels.


Asunto(s)
Avena/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Hidrogeles/química , Queratinas/química , Mananos/química , Extractos Vegetales/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Colágeno/metabolismo , Humanos , Queratinas/aislamiento & purificación , Masculino , Ratones , Células 3T3 NIH , Extractos Vegetales/farmacología , Ratas Wistar , Andamios del Tejido/química
10.
RSC Adv ; 8(5): 2305-2314, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35541447

RESUMEN

Chronic wounds cost several billion dollars of public healthcare spending annually and continue to be a persistent threat globally. Several treatment methods have been explored, and all of them involve covering up the wound with therapeutic dressings that reduce inflammation and accelerate the healing process. In this present study, morin (MOR) was loaded onto hydrogel scaffolds prepared from psyllium seed husk polysaccharide (PSH), and human hair keratins (KER) crosslinked with sodium trimetaphosphate. ATR-FTIR confirmed the presence of the constituent chemical ingredients. SEM images of the scaffold surface reveal a highly porous architecture, with about 80% porosity measured by liquid displacement measurement, irrespective of the morin concentration. Swelling assays carried out on the scaffolds portray an ability to absorb up to seven times their dry weight of fluids. This makes them attractive for guiding moist wound healing on medium exuding wounds. An Alamar blue assay of NIH/3T3 fibroblast cells shows that cell viability decreases in the first 24 h but recovers to 85% in comparison to a control after 48 h. SEM images of fibroblast cells grown on the scaffolds confirm cellular attachment. An in vivo diabetic wound healing study showed that PSH + KER + MOR scaffold treatment significantly reduced the re-epithelialization time (p < 0.01) and enhanced the rate of wound contraction (p < 0.001), by accelerating collagen synthesis in diabetic rats compared to controls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...