Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(5): e0285732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37192181

RESUMEN

OBJECTIVES: Accumulating evidence shows that mesenchymal transition of glioblastomas is associated with a more aggressive course of disease and therapy resistance. In WHO2021-defined adult-type diffuse gliomas of lower grade (dLGG), the transition of the tumor phenotype over time, has not been studied. Most efforts to correlate proneural, classical or mesenchymal phenotype with outcome in dLGG were made prior to the WHO 2021 classification. Here, we set out to investigate if phenotype predicted survival and tumor recurrence in a clinical cohort of dLGGs, re-classified according to the 2021 WHO criteria. METHODS: Using a TMA-based approach with five immunohistochemical markers (EGFR, p53, MERTK, CD44 and OLIG2), we investigated 183 primary and 49 recurrent tumors derived from patients with previously diagnosed dLGG. Of the 49 relapses, nine tumors recurred a second time, and one a third time. RESULTS: In total, 71.0% of all tumors could be subtyped. Proneural was most dominant in IDH-mut tumors (78.5%), mesenchymal more common among IDH-wt tumors (63.6%). There was a significant difference in survival between classical, proneural and mesenchymal phenotypes in the total cohort (p<0.001), but not after molecular stratification (IDH-mut: p = 0.220, IDH-wt: p = 0.623). Upon recurrence, proneural was retained in 66.7% of the proneural IDH-mut dLGGs (n = 21), whereas IDH-wt tumors (n = 10) mainly retained or gained mesenchymal phenotype. No significant difference in survival was found between IDH-mut gliomas remaining proneural and those shifting to mesenchymal phenotype (p = 0.347). CONCLUSION: Subtyping into classical, proneural and mesenchymal phenotypes by five immunohistochemical markers, was possible for the majority of tumors, but protein signatures did not correlate with patient survival in our WHO2021-stratified cohort. At recurrence, IDH-mut tumors mainly retained proneural, while IDH-wt tumors mostly retained or gained mesenchymal signatures. This phenotypic shift, associated with increased aggressiveness in glioblastoma, did not affect survival. Group sizes were, however, too small to draw any firm conclusions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patología , Isocitrato Deshidrogenasa/genética , Recurrencia Local de Neoplasia , Glioma/patología , Organización Mundial de la Salud , Mutación
2.
Genome Med ; 15(1): 24, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055795

RESUMEN

BACKGROUND: Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS: Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS: Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS: Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Isocitrato Deshidrogenasa/genética , Glioma/metabolismo , Diferenciación Celular/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Cromatina , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...