Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069190

RESUMEN

Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.


Asunto(s)
Epilepsia Refleja , Cricetinae , Animales , Humanos , Xenopus laevis/metabolismo , Epilepsia Refleja/genética , Convulsiones/metabolismo , Receptores de Ácido Kaínico/metabolismo , Oocitos/metabolismo
2.
Curr Biol ; 29(7): 1149-1160.e4, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30905607

RESUMEN

The existence of axons extending from one retina to the other has been reported during perinatal development in different vertebrates. However, it has been thought that these axons are either a labeling artifact or misprojections. Here, we show unequivocally that a small subset of retinal ganglion cells (RGCs) project to the opposite retina and that the guidance receptor Unc5c, expressed in the retinal region where the retinal-retinal (R-R) RGCs are located, is necessary and sufficient to guide axons to the opposite retina. In addition, Netrin1, an Unc5c ligand, is expressed in the ventral diencephalon in a pattern that is consistent with impeding the growth of Unc5c-positive retinal axons into the brain. We also have generated a mathematical model to explore the formation of retinotopic maps in the presence and absence of a functional connection between both eyes. This model predicts that an R-R connection is required for the bilateral coordination of axonal refinement in species where refinement depends upon spontaneous retinal waves. Consistent with this idea, the retinal expression of Unc5c correlates with the existence and size of an R-R projection in different species and with the extent of axonal refinement in visual targets. These findings demonstrate that active guidance drives the formation of the R-R projection and suggest an important role for these projections in visual mapping to ensure congruent bilateral refinement.


Asunto(s)
Pollos/crecimiento & desarrollo , Hurones/crecimiento & desarrollo , Receptores de Netrina/genética , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Vías Visuales/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Ratones/crecimiento & desarrollo , Receptores de Netrina/metabolismo
3.
J Neurosci ; 31(15): 5673-81, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490208

RESUMEN

The organization of the visual system is different in birds and mammals. In both, retinal axons project topographically to the visual targets in the brain; but whereas in birds visual fibers from the entire retina decussate at the optic chiasm, in mammals, a number of axons from the temporal retina diverge at the midline to project ipsilaterally. Gain-of-function experiments in chick raised the hypothesis that the transcription factor Foxd1 specifies retinal temporal identity. However, it remains unknown whether Foxd1 is necessary for this function. In mammals, the crucial role of Foxd1 in the patterning of the optic chiasm region has complicated the interpretation of its cell-autonomous function in the retina. Furthermore, target molecules identified for Foxd1 are different in chicks and mice, leading to question the function of Foxd1 in mammals. Here we show that in the mouse, Foxd1 imprints temporal features in the retina such as axonal ipsilaterality and rostral targeting in collicular areas and that EphA6 is a Foxd1 downstream effector that sends temporal axons to the rostral colliculus. In addition, our data support a model in which the desensitization of EphA6 by ephrinA5 in cis is not necessary for the proper functioning of EphA6. Overall, these results indicate that Foxd1 functions as a conserved determinant of temporal identity but reveal that the downstream effectors, and likely their mechanisms of action, are different in mammals and birds.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Retina/crecimiento & desarrollo , Animales , Axones/fisiología , Mapeo Encefálico , Técnicas de Cocultivo , ADN/genética , Electroporación , Efrina-A5/genética , Efrina-A5/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Cuerpos Geniculados/citología , Cuerpos Geniculados/embriología , Cuerpos Geniculados/fisiología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Plásmidos/genética , Embarazo , Receptor EphA6/genética , Receptor EphA6/fisiología , Retina/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Colículos Superiores/citología , Colículos Superiores/embriología , Colículos Superiores/fisiología
4.
Development ; 135(10): 1833-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18417618

RESUMEN

Axons of retinal ganglion cells (RGCs) make a divergent choice at the optic chiasm to cross or avoid the midline in order to project to ipsilateral and contralateral targets, thereby establishing the binocular visual pathway. The zinc-finger transcription factor Zic2 and a member of the Eph family of receptor tyrosine kinases, EphB1, are both essential for proper development of the ipsilateral projection at the mammalian optic chiasm midline. Here, we demonstrate in mouse by functional experiments in vivo that Zic2 is not only required but is also sufficient to change the trajectory of RGC axons from crossed to uncrossed. In addition, our results reveal that this transcription factor regulates the expression of EphB1 in RGCs and also suggest the existence of an additional EphB1-independent pathway controlled by Zic2 that contributes to retinal axon divergence at the midline.


Asunto(s)
Axones/fisiología , Proteínas Nucleares/fisiología , Quiasma Óptico/citología , Receptor EphB1/fisiología , Factores de Transcripción/fisiología , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Quiasma Óptico/embriología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
5.
BMC Dev Biol ; 7: 103, 2007 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-17875204

RESUMEN

BACKGROUND: The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs). RESULTS: Here we show that RGCs can be targeted for gene expression by in utero electroporation of the eye of mouse embryos. Accordingly, using this technique we have monitored the morphology of electroporated RGCs expressing reporter genes at different developmental stages, as well as their projection to higher visual targets. CONCLUSION: Our method to deliver ectopic genes into mouse embryonic retinas enables us to follow the course of the entire retinofugal pathway by visualizing RGC bodies and axons. Thus, this technique will permit to perform functional studies in vivo focusing on neurogenesis, axon guidance, axon projection patterning or neural connectivity in mammals.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Células Ganglionares de la Retina , Animales , Electroporación , Embrión de Mamíferos , Femenino , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...