Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915486

RESUMEN

PARP1 (ARTD1) and Tankyrases (TNKS1/TNKS2; PARP5a/5b) are poly-ADP-ribose polymerases (PARPs) with catalytic and non-catalytic functions that regulate both the genome and proteome during zygotic genome activation (ZGA), totipotent, and pluripotent embryonic stages. Here, we show that primed, conventional human pluripotent stem cells (hPSC) cultured continuously under non-specific TNKS1/TNKS2/PARP1-inhibited chemical naive reversion conditions underwent epigenetic reprogramming to clonal blastomere-like stem cells. TIRN stem cells concurrently expressed hundreds of gene targets of the ZGA-priming pioneer factor DUX4, as well as a panoply of four-cell (4C)-specific (e.g., TPRXL, HOX clusters), eight-cell (8C)-specific (e.g., DUXA, GSC, GATA6), primitive endoderm-specific (e.g., GATA4, SOX17), trophectoderm-specific (e.g., CDX2, TFAP2C), and naive epiblast-specific (e.g., DNMT3L, NANOG, POU5F1(OCT4)) factors; all in a hybrid, combinatorial single-cell manner. Mapping of proteomic and single-cell expressions of TIRN cells against human preimplantation embryo references identified them as relatively homogenous 4C-8C stage populations. Injection of TIRN cells into murine 8C-16C-staged embryos resulted in efficient totipotent-like single cell contributions of human cells to both extra-embryonic (trophectoderm, placenta) and embryonic (neural, fetal liver, hematopoietic) lineages in human-murine blastocyst and fetal chimeras. Pairing of proteome with ubiquitinome analyses of TIRN cells revealed a global shutdown of ADP-ribosylation, and a perturbed TNKS/PARP1 equilibrium which not only impacted the protein levels of hundreds of TNKS/PARP1 substrates via a rewiring of the ubiquitin-proteosome system (UPS), but also de-repressed expression of hundreds of developmental genes associated with PARP1 suppression. ChIP-Seq analysis of core NANOG-SOX2-OCT4 (NSO) pluripotency factors in TIRN cells identified reprogrammed DUX4-accessible distal and cis-regulatory enhancer regions that were co-bound by PARP1 (NSOP). These NSOP enhancer regions possessed co-binding motifs for hundreds of the same ZGA-associated, embryonic, and extraembryonic lineage-specifying pioneer factors (e.g., HOX, FOX, GATA, SOX, TBX, CDX families) that were concurrently co-expressed in TIRN cells; suggesting that PARP1 and DUX4 cooperate with NSO pluripotency core factors to regulate the epigenetic plasticity of a human totipotency program. These findings provide the first demonstration that global, proteome-wide perturbations of post-translational modifications (i.e., ADP-ribosylation, ubiquitination) can regulate epigenetic reprogramming during human embryogenesis. Totipotent TIRN stem cells will provide a valuable cell culture model for studying the proteogenomic regulation of lineage specification from human blastomere stages and may facilitate the efficient generation of human organs in interspecies chimeras.

2.
Am J Surg Pathol ; 48(6): 699-707, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369783

RESUMEN

Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints ( RB1 , CDKN2A ). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Fibrosarcoma , Mutación , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fibrosarcoma/genética , Fibrosarcoma/patología , Fibrosarcoma/enzimología , Persona de Mediana Edad , Anciano , Adulto , Femenino , Masculino , Análisis Mutacional de ADN , Biomarcadores de Tumor/genética , Predisposición Genética a la Enfermedad , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Anciano de 80 o más Años , Fenotipo , Bases de Datos Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...