Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(9): 1731-1742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37663435

RESUMEN

DNA-dependent protein kinase (DNA-PK), a driver of the non-homologous end-joining (NHEJ) DNA damage response pathway, plays an instrumental role in repairing double-strand breaks (DSB) induced by DNA-damaging poisons. We evaluate ZL-2201, an orally bioavailable, highly potent, and selective pharmacologic inhibitor of DNA-PK activity, for the treatment of human cancerous malignancies. ZL-2201 demonstrated greater selectivity for DNA-PK and effectively inhibited DNA-PK autophosphorylation in a concentration- and time-dependent manner. Initial data suggested a potential correlation between ataxia-telangiectasia mutated (ATM) deficiency and ZL-2201 sensitivity. More so, ZL-2201 showed strong synergy with topoisomerase II inhibitors independent of ATM status in vitro. In vivo oral administration of ZL-2201 demonstrated dose-dependent antitumor activity in the NCI-H1703 xenograft model and significantly enhanced the activity of approved DNA-damaging agents in A549 and FaDu models. From a phosphoproteomic mass spectrometry screen, we identified and validated that ZL-2201 and PRKDC siRNA decreased Ser108 phosphorylation of MCM2, a key DNA replication factor. Collectively, we have characterized a potent and selective DNA-PK inhibitor with promising monotherapy and combinatory therapeutic potential with approved DNA-damaging agents. More importantly, we identified phospho-MCM2 (Ser108) as a potential proximal biomarker of DNA-PK inhibition that warrants further preclinical and clinical evaluation. Significance: ZL-2201, a potent and selective DNA-PK inhibitor, can target tumor models in combination with DNA DSB-inducing agents such as radiation or doxorubicin, with potential to improve recurrent therapies in the clinic.


Asunto(s)
Proteína Quinasa Activada por ADN , Humanos , Administración Oral , Fosforilación , Animales , Proteína Quinasa Activada por ADN/antagonistas & inhibidores
2.
Mol Cancer Ther ; 19(10): 2079-2088, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788205

RESUMEN

Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).


Asunto(s)
Inmunoconjugados/uso terapéutico , Animales , Femenino , Células HEK293 , Humanos , Inmunoconjugados/farmacología , Ratones , Ratones Desnudos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
3.
PLoS One ; 13(1): e0191046, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370189

RESUMEN

Guanylyl cyclase C (GCC) is a cell-surface protein that is expressed by normal intestinal epithelial cells, more than 95% of metastatic colorectal cancers (mCRC), and the majority of gastric and pancreatic cancers. Due to strict apical localization, systemically delivered GCC-targeting agents should not reach GCC in normal intestinal tissue, while accessing antigen in tumor. We generated an investigational antibody-drug conjugate (TAK-264, formerly MLN0264) comprising a fully human anti-GCC monoclonal antibody conjugated to monomethyl auristatin E via a protease-cleavable peptide linker. TAK-264 specifically bound, was internalized by, and killed GCC-expressing cells in vitro in an antigen-density-dependent manner. In GCC-expressing xenograft models with similar GCC expression levels/patterns observed in human mCRC samples, TAK-264 induced cell death, leading to tumor regressions and long-term tumor growth inhibition. TAK-264 antitumor activity was generally antigen-density-dependent, although some GCC-expressing tumors were refractory to TAK-264-targeted high local concentrations of payload. These data support further evaluation of TAK-264 in the treatment of GCC-expressing tumors.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunoconjugados/farmacología , Oligopéptidos/metabolismo , Receptores de Enterotoxina/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados , Western Blotting , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Femenino , Células HEK293 , Humanos , Mucosa Intestinal/enzimología , Ratones , Ratones SCID , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...