Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 73(1): 34-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658901

RESUMEN

This study applies the mental model and cognitive mapping method to involve stakeholders in delineating the mutual relations between sources of water, energy, and food (WEF) production in the Varamin Plain (VP). Through involving farmers and managerial experts, the approach facilitates the deployment of community communication patterns to recognize and comprehend problems and move from single-loop learning to double-loop learning. The dynamic model was driven from the final mental model of the participants to reflect changes in the systems over time. The system dynamic (SD) model incorporates three scenarios for enhancing irrigation efficiency, managing groundwater extraction, and satisfying environmental needs. The results uncovered that the surface and underground water resources of the VP will gradually decrease within the next two decades in the range of 158 and 2700 million cubic meters (MCM) per year. Also, the plain suffers from water insecurity and a 162 MCM shortage. Consequently, focusing on understanding the nexus and nexus governance can enhance resource management and achieve sustainable development goals. Essentially, promoting collaborative governance, such as creating cooperative organizations and implementing double-loop learning, and instituting a water market, regulatory governance, and monitoring laws can improve the state of Varamin Plain's resources. These results carry important policy implications for using mental models to consider dynamics for discussions on participatory management of the WEF system nexus and environmental management.


Asunto(s)
Abastecimiento de Agua , Agua , Humanos , Irán , Abastecimiento de Alimentos , Modelos Psicológicos
2.
PLoS One ; 18(2): e0280263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724172

RESUMEN

Most of the classic texts in Kurdish literature are poems. Knowing the meter of the poems is helpful for correct reading, a better understanding of the meaning, and avoiding ambiguity. This paper presents a rule-based method for the automatic classification of the poem meter for the Central Kurdish language also known as Sorani. The metrical system of Kurdish poetry is divided into three classes quantitative, syllabic, and free verses. As the vowel length is not phonemic in the language, there are uncertainties in syllable weight and meter identification. The proposed method generates all the possible situations and then, by considering all lines of the input poem and the common meter patterns of Kurdish poetry, identifies the most probable meter type and pattern of the input poem. Evaluation of the method on a dataset from VejinBooks Kurdish corpus resulted in 97.3% of precision in meter type and 96.2% of precision in pattern identification.


Asunto(s)
Lenguaje , Lectura
3.
Med Biol Eng Comput ; 58(7): 1467-1482, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32363555

RESUMEN

Many studies in the rigid gas permeable (RGP) lens fitting field have focused on providing the best fit for patients with irregular astigmatism, a challenging issue. Despite the ease and accuracy of fitting in the current fitting methods, no studies have provided a high-pace solution with the final best fit to assist experts. This work presents a deep learning solution for identifying features in Pentacam four refractive maps and RGP base curve identification. An authentic dataset of 247 samples of Pentacam four refractive maps was gathered, providing a multi-view image of the corneal structure. Scratch-based convolutional neural network (CNN) architectures and well-known CNN architectures such as AlexNet, GoogLeNet, and ResNet have been used to extract features and transfer learning. Features are aggregated through a fusion technique. Based on a comparison of means square error (MSE) of normalized labels, the multi-view scratch-based CNN provided R-squared of 0.849, 0.846, 0.835, and 0.834 followed by GoogLeNet, comparable with current methods. Transfer learning outperforms various scratch-based CNN models, through which proper specifications some scratch-based models were able to increase coefficient of determinations. CNNs on multi-view Pentacam images have enabled fast detection of the RGP lens base curve, higher patient satisfaction, and reduced chair time. Graphical abstract The Pentacam four refractive maps is learned by the proposed scratch-based and transfer learning-based CNN methodology. The deep network-based solutions enable identification of rigid gas permeable lens for patients with irregular astigmatism.


Asunto(s)
Lentes de Contacto , Aprendizaje Profundo , Astigmatismo , Lentes de Contacto de Uso Prolongado , Paquimetría Corneal , Humanos , Redes Neurales de la Computación
4.
Front Comput Neurosci ; 13: 45, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354463

RESUMEN

Studying and understanding human brain structures and functions have become one of the most challenging issues in neuroscience today. However, the mammalian nervous system is made up of hundreds of millions of neurons and billions of synapses. This complexity made it impossible to reconstruct such a huge nervous system in the laboratory. So, most researchers focus on C. elegans neural network. The C. elegans neural network is the only biological neural network that is fully mapped. This nervous system is the simplest neural network that exists. However, many fundamental behaviors like movement emerge from this basic network. These features made C. elegans a convenient case to study the nervous systems. Many studies try to propose a network formation model for C. elegans neural network. However, these studies could not meet all characteristics of C. elegans neural network, such as significant factors that play a role in the formation of C. elegans neural network. Thus, new models are needed to be proposed in order to explain all aspects of C. elegans neural network. In this paper, a new model based on game theory is proposed in order to understand the factors affecting the formation of nervous systems, which meet the C. elegans frontal neural network characteristics. In this model, neurons are considered to be agents. The strategy for each neuron includes either making or removing links to other neurons. After choosing the basic network, the utility function is built using structural and functional factors. In order to find the coefficients for each of these factors, linear programming is used. Finally, the output network is compared with C. elegans frontal neural network and previous models. The results implicate that the game-theoretical model proposed in this paper can better predict the influencing factors in the formation of C. elegans neural network compared to previous models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA