Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 1062113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620055

RESUMEN

Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.

2.
Nutrients ; 13(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802038

RESUMEN

Many studies have highlighted the relationship between food and health status, with the aim of improving both disease prevention and life expectancy. Among the different food groups, fermented foods a have huge microbial biodiversity, making them an interesting source of metabolites that could exhibit health benefits. Our previous study highlighted the capacity of raw goat milk cheese, and some of the extracts recovered by the means of chemical fractionation, to increase the longevity of the nematode Caenorhabditis elegans. In this article, we pursued the investigation with a view toward understanding the biological mechanisms involved in this phenomenon. Using mutant nematode strains, we evaluated the implication of the insulin-like DAF-2/DAF-16 and the p38 MAPK pathways in the phenomenon of increased longevity and oxidative-stress resistance mechanisms. Our results demonstrated that freeze-dried raw goat milk cheese, and its extracts, induced the activation of the DAF-2/DAF-16 pathway, increasing longevity. Concerning oxidative-stress resistance, all the extracts increased the survival of the worms, but no evidence of the implication of both of the pathways was highlighted, except for the cheese-lipid extract that did seem to require both pathways to improve the survival rate. Simultaneously, the cheese-lipid extract and the dried extract W70, obtained with water, were able to reduce the reactive oxygen species (ROS) production in human leukocytes. This result is in good correlation with the results obtained with the nematode.


Asunto(s)
Caenorhabditis elegans/fisiología , Queso , Leucocitos/fisiología , Estrés Oxidativo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Alimentos en Conserva , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Liofilización , Regulación de la Expresión Génica , Longevidad , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Leche , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
3.
PLoS One ; 15(11): e0242370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211771

RESUMEN

With the ever-increasing human lifespan, age-related affections have become a public health issue. The health sector is looking for new bioactive compounds to respond to this demand. The unexplored microbial biodiversity and its metabolites represent a major source of innovative bioactive molecules with health potential. Fermented foods, such as raw-milk cheese, have already been investigated for their rich microbial environment, especially for their organoleptic qualities. But studies remain limited regarding their effects on health and few metabolites of microbial origin have been identified. An efficient methodology was developed in this study to investigate the biological effect of raw-milk cheese, combining a chemical fractionation, to isolate the most metabolites from the cheese matrix, and an in vivo biological test using Caenorhabditis elegans. C. elegans was brought into contact with cheese extracts, obtained by means of chemical fractionation, and with freeze-dried whole cheese by supplementing the nematode growth medium. A longevity assay was performed to evaluate the effects of the extracts on the worms. Our results demonstrate the feasibility of the method developed to bring the worms into contact of the cheese extracts. The evaluation of the effects of the extracts on the longevity was possible. Some extracts showed a beneficial effect as extract W70 for example, obtained with water, which increases the mean lifespan by 16% and extends the longevity by 73% (p < 0.0001).


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Queso/análisis , Fraccionamiento Químico/métodos , Mezclas Complejas/farmacología , Análisis de los Alimentos/métodos , Acetatos , Animales , Caenorhabditis elegans/fisiología , Mezclas Complejas/aislamiento & purificación , Mezclas Complejas/toxicidad , Ciclohexanos , Etanol , Estudios de Factibilidad , Liofilización , Cabras , Interacciones Hidrofóbicas e Hidrofílicas , Longevidad/efectos de los fármacos , Cloruro de Metileno , Leche/química , Solventes , Agua
4.
Sci Rep ; 10(1): 17074, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051479

RESUMEN

GYNOPHILUS (Lcr REGENERANS) is a live biotherapeutic product (LBP) aimed at restoring the vaginal microbiome and contains the live biotherapeutic microorganism Lactobacillus rhamnosus Lcr35. In this study, the LBP formulation and manufacturing process significantly enhanced the anti-Candida activity of L. rhamnosus Lcr35, with a complete loss of viability of the yeast after 48 h of coincubation. Sodium thiosulfate (STS), one excipient of the product, was used as a potentiator of the anti-Candida spp. activity of Lactobacilli. This contact-independent phenomenon induced fungal cell disturbances, as observed by electron microscopy observations. Nonverbal sensory experiments showed clear odor dissimilarities between cocultures of L. rhamnosus Lcr35 and C. albicans in the presence and absence of STS, suggesting an impact of odor-active metabolites. A volatolomic approach allowed the identification of six odor-active compounds, including one sulfur compound that was identified as S-methyl thioacetate (MTA). MTA was associated with the antifungal effect of Lcr35, and its functional link was established in vitro. We show for the first time that the LBP GYNOPHILUS, which is a highly active product in the reduction of vulvovaginal candidiasis, requires the presence of a sulfur compound to fully achieve its antifungal effect.


Asunto(s)
Antifúngicos/administración & dosificación , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/terapia , Lacticaseibacillus rhamnosus/fisiología , Probióticos/administración & dosificación , Compuestos de Azufre/administración & dosificación , Acetatos/administración & dosificación , Candida albicans/patogenicidad , Candida albicans/fisiología , Candida albicans/ultraestructura , Técnicas de Cocultivo , Femenino , Humanos , Técnicas In Vitro , Lacticaseibacillus rhamnosus/ultraestructura , Microbiota , Microscopía Electrónica , Odorantes , Tiosulfatos/administración & dosificación , Vagina/efectos de los fármacos , Vagina/microbiología
5.
Microorganisms ; 8(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570901

RESUMEN

The design of multiscale strategies integrating in vitro and in vivo models is necessary for the selection of new probiotics. In this regard, we developed a screening assay based on the investigation of the potential of yeasts from cheese as probiotics against the pathogen Salmonella Typhimurium UPsm1 (ST). Two yeasts isolated from raw-milk cheese (Saccharomyces cerevisiae 16, Sc16; Debaryomyces hansenii 25, Dh25), as well as S. cerevisiae subspecies boulardii (CNCM I-1079, Sb1079), were tested against ST by applying in vitro and in vivo tests. Adherence measurements to Caco-2 and HT29-MTX intestinal cells indicated that the two tested cheese yeasts presented a better adhesion than the probiotic Sb1079 as the control strain. Further, the Dh25 was the cheese yeast most likely to survive in the gastrointestinal tract. What is more, the modulation of the TransEpithelial Electrical Resistance (TEER) of differentiated Caco-2 cell monolayers showed the ability of Dh25 to delay the deleterious effects of ST. The influence of microorganisms on the in vivo model Caenorhabditis elegans was evaluated by measuring the longevity of the worm. This in vivo approach revealed that this yeast increased the worm's lifespan and protected it against ST infection, confirming that this in vivo model can be useful for screening probiotic cheese yeasts.

6.
Microorganisms ; 8(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878039

RESUMEN

The resistance of Candida albicans to conventional drug treatments, as well as the recurrence phenomena due to dysbiosis caused by antifungal treatments, have highlighted the need to implement new therapeutic methodologies. The antifungal potential of live biotherapeutic products (LBP) has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. In this study, we investigated the curative anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell and the in vivo Caenorhabditis elegans models. We showed that Lcr35® does inhibit neither the growth (p = 0.603) nor the biofilm formation (p = 0.869) of C. albicans in vitro. Lcr35® protects the animal from the fungal infection (+225% of survival, p < 2 × 10-16) even if the yeast is detectable in its intestine. In contrast, the Lcr35® cell-free supernatant does not appear to have any antipathogenic effect. At the mechanistic level, the DAF-16/Forkhead Box O transcription factor is activated by Lcr35® and genes of the p38 MAP Kinase signaling pathway and genes involved in the antifungal response are upregulated in presence of Lcr35® after C. albicans infection. These results suggest that the LBM strain acts by stimulating its host via DAF-16 and the p38 MAPK pathway.

7.
PLoS One ; 14(11): e0216184, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31693670

RESUMEN

The increased recurrence of Candida albicans infections is associated with greater resistance to antifungal drugs. This involves the establishment of alternative therapeutic protocols, such as probiotic microorganisms whose antifungal potential has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding the mechanisms of action of probiotic microorganisms has become a strategic need for the development of new therapeutics for humans. In this study, we investigated the prophylactic anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell model and the in vivo Caenorhabditis elegans model. In Caco-2 cells, we showed that the strain Lcr35® significantly inhibited the growth (~2 log CFU.mL-1) and adhesion (150 to 6,300 times less) of the pathogen. Moreover, in addition to having a pro-longevity activity in the nematode (+42.9%, p = 3.56.10-6), Lcr35® protects the animal from the fungal infection (+267% of survival, p < 2.10-16) even if the yeast is still detectable in its intestine. At the mechanistic level, we noticed the repression of genes of the p38 MAPK signalling pathway and genes involved in the antifungal response induced by Lcr35®, suggesting that the pathogen no longer appears to be detected by the worm immune system. However, the DAF-16/FOXO transcription factor, implicated in the longevity and antipathogenic response of C. elegans, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulating its host via DAF-16 but also by suppressing the virulence of the pathogen.


Asunto(s)
Candida albicans , Candidiasis/prevención & control , Lacticaseibacillus rhamnosus , Probióticos/uso terapéutico , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Células CACO-2 , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Virulencia
8.
BMC Microbiol ; 18(1): 193, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466395

RESUMEN

BACKGROUND: Staphylococcus aureus is an important foodborne pathogen. Lactococcus garvieae is a lactic acid bacterium found in dairy products; some of its strains are able to inhibit S. aureus growth by producing H2O2. Three strains of L. garvieae from different origins were tested for their ability to inhibit S. aureus SA15 growth. Two conditions were tested, one in which H2O2 was produced (high aeration) and another one in which it was not detected (low aeration). Several S. aureus genes related to stress, H2O2-response and virulence were examined in order to compare their level of expression depending on the inoculated L. garvieae strain. Simultaneous L. garvieae H2O2 metabolism gene expression was followed. RESULTS: The results showed that under high aeration condition, L. garvieae strains producing H2O2 (N201 and CL-1183) inhibited S. aureus SA15 growth and impaired its ability to deal with hydrogen peroxide by repressing H2O2-degrading genes. L. garvieae strains induced overexpression of S. aureus stress-response genes while cell division genes and virulence genes were repressed. A catalase treatment partially or completely restored the SA15 growth. In addition, the H2O2 non-producing L. garvieae strain (Lg2) did not cause any growth inhibition. The SA15 stress-response genes were down-regulated and cell division genes expression was not affected. Under low aeration condition, while none of the strains tested exhibited H2O2-production, the 3 L. garvieae strains inhibited S. aureus SA15 growth, but to a lesser extent than under high aeration condition. CONCLUSION: Taken together, these results suggest a L. garvieae strain-specific anti-staphylococcal mechanism and an H2O2 involvement in at least two of the tested L. garvieae strains.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Lactococcus/metabolismo , Estrés Oxidativo , Staphylococcus aureus/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/metabolismo , Lactococcus/química , Lactococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo
9.
Appl Microbiol Biotechnol ; 99(1): 399-411, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25280746

RESUMEN

The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products' properties would therefore represent an essential step in evaluating the effects of probiotic strains.


Asunto(s)
Pared Celular/química , Lacticaseibacillus rhamnosus/química , Proteínas de la Membrana/análisis , Probióticos/química , Propiedades de Superficie , Adhesión Bacteriana , Células CACO-2 , Pared Celular/genética , Química Farmacéutica , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Humanos , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/fisiología , Proteínas de la Membrana/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Tecnología Farmacéutica/métodos
10.
J Biotechnol ; 160(3-4): 236-41, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22542933

RESUMEN

Probiotics are administered as complex manufactured products and yet most studies on probiotic bacterial strains have been performed with native culture strains. Little is known about the influence of industrial processes on the properties of the microorganisms. In this study, we comparatively assessed the characteristics of the probiotic bacterial strain Lactobacillus rhamnosus (Lcr35(®)) together with four of its commercial formulations, including three intestinal formulas (BACILOR with Lcr Restituo(®) packet and capsule and FLOREA Lcr Lenio(®)) and one vaginal formula (GYNOPHILUS Lcr Regenerans(®)). Lcr35(®) grown from the intestinal formulas displayed increased resistance to acidic pH and bile stress, especially FLOREA (Lcr Lenio(®)), which showed a 4.5log higher number of viable bacteria compared to the results obtained with the control native Lcr35(®) strain. Adhesion to intestinal cells was significantly higher with Lcr Restituo(®) packet and Lcr Restituo(®) capsule vs Lcr35(®). Bacteria from the vaginal formulation GYNOPHILUS had increased ability to metabolize glycogen thereby increasing lactic acid production. In vitro growth inhibition of the pathogen Candida albicans was significantly higher with bacteria from the vaginal formulation (4.5 log difference) and in the presence of vaginal epithelial cells than with the native strain. Our results show that the manufacturing process influences strain properties and should therefore be adapted according to the strain and the therapeutic indication.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Lacticaseibacillus rhamnosus/clasificación , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/metabolismo , Probióticos/aislamiento & purificación , Especificidad de la Especie
11.
Food Microbiol ; 30(1): 74-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22265286

RESUMEN

The impact of Gram-negative bacteria on sensory characteristics and production of volatile compounds as well as biogenic amines (BA) in the core of an uncooked pressed type model cheese was investigated in the presence of a defined complex microbial consortium. Eleven strains of Gram-negative bacteria, selected on the basis of their biodiversity and in vitro BA-production ability, were individually tested in a model cheese. Four out of 6 strains of Enterobacteriaceae (Citrobacter freundii UCMA 4217, Klebsiella oxytoca 927, Hafnia alvei B16 and Proteus vulgaris UCMA 3780) reached counts close to 6 log CFU g⁻¹ in the model cheese. In core of cheeses inoculated with Gram-negative bacteria, only slight differences were observed for microbial counts (Enterococcus faecalis or Lactobacillus plantarum count differences below 1 log CFU g⁻¹), acetate concentration (differences below 200 mg kg⁻¹) and texture (greater firmness) in comparison to control cheeses. Cheese core colour, odour and volatile compound composition were not modified. Although ornithine, the precursor of putrescine, was present in all cheeses, putrescine was only detected in cheeses inoculated with H. alvei B16 and never exceeded 2.18 mmol kg⁻¹ cheese dry matter. Cadaverine was only detected in cheeses inoculated with H. alvei B16, K. oxytoca 927, Halomonas venusta 4C1A or Morganella morganii 3A2A but at lower concentrations (<1.05 mmol kg⁻¹ cheese dry matter), although lysine was available. Only insignificant amounts of the detrimental BA histamine and tyramine, as well as isopentylamine, tryptamine or phenylethylamine, were produced in the cheese model by any of the Gram-negative strains, including those which produced these BA at high levels in vitro.


Asunto(s)
Aminas Biogénicas/análisis , Queso/microbiología , Manipulación de Alimentos/métodos , Microbiología de Alimentos , Bacterias Gramnegativas/crecimiento & desarrollo , Consorcios Microbianos , Cadaverina/biosíntesis , Recuento de Colonia Microbiana , Comportamiento del Consumidor , Contaminación de Alimentos , Cinética , Putrescina/biosíntesis , Gusto , Compuestos Orgánicos Volátiles/análisis
12.
Appl Environ Microbiol ; 78(2): 326-33, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22081572

RESUMEN

The diversity of the microbial community on cow teat skin was evaluated using a culture-dependent method based on the use of different dairy-specific media, followed by the identification of isolates by 16S rRNA gene sequencing. This was combined with a direct molecular approach by cloning and 16S rRNA gene sequencing. This study highlighted the large diversity of the bacterial community that may be found on teat skin, where 79.8% of clones corresponded to various unidentified species as well as 66 identified species, mainly belonging to those commonly found in raw milk (Enterococcus, Pediococcus, Enterobacter, Pantoea, Aerococcus, and Staphylococcus). Several of them, such as nonstarter lactic acid bacteria (NSLAB), Staphylococcus, and Actinobacteria, may contribute to the development of the sensory characteristics of cheese during ripening. Therefore, teat skin could be an interesting source or vector of biodiversity for milk. Variations of microbial counts and diversity between the farms studied have been observed. Moreover, Staphylococcus auricularis, Staphylococcus devriesei, Staphylococcus arlettae, Streptococcus bovis, Streptococcus equinus, Clavibacter michiganensis, Coprococcus catus, or Arthrobacter gandavensis commensal bacteria of teat skin and teat canal, as well as human skin, are not common in milk, suggesting that there is a breakdown of microbial flow from animal to milk. It would then be interesting to thoroughly study this microbial flow from teat to milk.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Infecciones Bacterianas/veterinaria , Biodiversidad , Portador Sano/veterinaria , Pezones/microbiología , Piel/microbiología , Animales , Bacterias/genética , Infecciones Bacterianas/microbiología , Portador Sano/microbiología , Bovinos , Queso/microbiología , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microbiología Industrial , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA