Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cells ; 9(5)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414201

RESUMEN

The cholesterol-sensing nuclear receptor liver X receptor (LXR) and the glucose-sensing transcription factor carbohydrate responsive element-binding protein (ChREBP) are central players in regulating glucose and lipid metabolism in the liver. More knowledge of their mechanistic interplay is needed to understand their role in pathological conditions like fatty liver disease and insulin resistance. In the current study, LXR and ChREBP co-occupancy was examined by analyzing ChIP-seq datasets from mice livers. LXR and ChREBP interaction was determined by Co-immunoprecipitation (CoIP) and their transactivity was assessed by real-time quantitative polymerase chain reaction (qPCR) of target genes and gene reporter assays. Chromatin binding capacity was determined by ChIP-qPCR assays. Our data show that LXRα and ChREBPα interact physically and show a high co-occupancy at regulatory regions in the mouse genome. LXRα co-activates ChREBPα and regulates ChREBP-specific target genes in vitro and in vivo. This co-activation is dependent on functional recognition elements for ChREBP but not for LXR, indicating that ChREBPα recruits LXRα to chromatin in trans. The two factors interact via their key activation domains; the low glucose inhibitory domain (LID) of ChREBPα and the ligand-binding domain (LBD) of LXRα. While unliganded LXRα co-activates ChREBPα, ligand-bound LXRα surprisingly represses ChREBPα activity on ChREBP-specific target genes. Mechanistically, this is due to a destabilized LXRα:ChREBPα interaction, leading to reduced ChREBP-binding to chromatin and restricted activation of glycolytic and lipogenic target genes. This ligand-driven molecular switch highlights an unappreciated role of LXRα in responding to nutritional cues that was overlooked due to LXR lipogenesis-promoting function.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/agonistas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Activación Transcripcional/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Línea Celular Tumoral , Cromatina/metabolismo , Femenino , Genoma , Humanos , Ligandos , Hígado/metabolismo , Receptores X del Hígado/química , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Elementos de Respuesta/genética
2.
Genome Res ; 27(6): 913-921, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28341773

RESUMEN

Maintenance of chromatin homeostasis involves proper delivery of histone variants to the genome. The interplay between different chaperones regulating the supply of histone variants to distinct chromatin domains remains largely undeciphered. We report a role of promyelocytic leukemia (PML) protein in the routing of histone variant H3.3 to chromatin and in the organization of megabase-size heterochromatic PML-associated domains that we call PADs. Loss of PML alters the heterochromatic state of PADs by shifting the histone H3 methylation balance from K9me3 to K27me3. Loss of PML impairs deposition of H3.3 by ATRX and DAXX in PADs but preserves the H3.3 loading function of HIRA in these regions. Our results unveil an unappreciated role of PML in the large-scale organization of chromatin and demonstrate a PML-dependent role of ATRX/DAXX in the deposition of H3.3 in PADs. Our data suggest that H3.3 loading by HIRA and ATRX-dependent H3K27 trimethylation constitute mechanisms ensuring maintenance of heterochromatin when the integrity of these domains is compromised.


Asunto(s)
Proteínas Portadoras/genética , Heterocromatina/metabolismo , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Animales , Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Co-Represoras , Fibroblastos/citología , Fibroblastos/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación de la Expresión Génica , Heterocromatina/ultraestructura , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Nucleosomas/ultraestructura , Proteína de la Leucemia Promielocítica/metabolismo , Transducción de Señal , Proteína Nuclear Ligada al Cromosoma X/metabolismo
3.
Genome Res ; 25(12): 1825-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26359231

RESUMEN

Dynamic interactions of nuclear lamins with chromatin through lamin-associated domains (LADs) contribute to spatial arrangement of the genome. Here, we provide evidence for prepatterning of differentiation-driven formation of lamin A/C LADs by domains of histone H2B modified on serine 112 by the nutrient sensor O-linked N-acetylglucosamine (H2BS112GlcNAc), which we term GADs. We demonstrate a two-step process of lamin A/C LAD formation during in vitro adipogenesis, involving spreading of lamin A/C-chromatin interactions in the transition from progenitor cell proliferation to cell-cycle arrest, and genome-scale redistribution of these interactions through a process of LAD exchange within hours of adipogenic induction. Lamin A/C LADs are found both in active and repressive chromatin contexts that can be influenced by cell differentiation status. De novo formation of adipogenic lamin A/C LADs occurs nonrandomly on GADs, which consist of megabase-size intergenic and repressive chromatin domains. Accordingly, whereas predifferentiation lamin A/C LADs are gene-rich, post-differentiation LADs harbor repressive features reminiscent of lamin B1 LADs. Release of lamin A/C from genes directly involved in glycolysis concurs with their transcriptional up-regulation after adipogenic induction, and with downstream elevations in H2BS112GlcNAc levels and O-GlcNAc cycling. Our results unveil an epigenetic prepatterning of adipogenic LADs by GADs, suggesting a coupling of developmentally regulated lamin A/C-genome interactions to a metabolically sensitive chromatin modification.


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Histonas/metabolismo , Lamina Tipo A/metabolismo , Acetilación , Adipogénesis , Cromatina/genética , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Glucólisis/genética , Glicosilación , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/química , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
4.
Stem Cells Dev ; 19(8): 1257-66, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19886822

RESUMEN

Mesenchymal stem cells (MSCs) can differentiate into multiple mesodermal cell types in vitro; however, their differentiation capacity is influenced by their tissue of origin. To what extent epigenetic information on promoters of lineage-specification genes in human progenitors influences transcriptional activation and differentiation potential remains unclear. We produced bisulfite sequencing maps of DNA methylation in adipogenic, myogenic, and endothelial promoters in relation to gene expression and differentiation capacity, and unravel a similarity in DNA methylation profiles between MSCs isolated from human adipose tissue, bone marrow (BM), and muscle. This similarity is irrespective of promoter CpG content. Methylation patterns of MSCs are distinct from those of hematopoietic progenitor cells (HPCs), pluripotent human embryonic stem cells (hESCs), and multipotent hESC-derived mesenchymal cells (MCs). Moreover, in vitro MSC differentiation does not affect lineage-specific promoter methylation states, arguing that these methylation patterns in differentiated cells are already established at the progenitor stage. Further, we find a correlation between lineage-specific promoter hypermethylation and lack of differentiation capacity toward that lineage, but no relationship between weak promoter methylation and capacity of transcriptional activation or differentiation. Thus, only part of the restriction in differentiation capacity of tissue-specific stem cells is programmed by promoter DNA methylation: hypermethylation seems to constitute a barrier to differentiation, however, no or weak methylation has no predictive value for differentiation potential.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Linaje de la Célula/fisiología , Metilación de ADN , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regiones Promotoras Genéticas/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Islas de CpG/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Expresión Génica/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Musculares/citología , Células Musculares/metabolismo , Músculo Esquelético/citología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética
5.
Stem Cells ; 25(4): 852-61, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17170064

RESUMEN

In vivo endothelial commitment of adipose stem cells (ASCs) has scarcely been reported, and controversy remains on the contribution of ASCs to vascularization. We address the epigenetic commitment of ASCs to the endothelial lineage. We report a bisulfite sequencing analysis of CpG methylation in the promoters of two endothelial-cell-specific genes, CD31 and CD144, in freshly isolated and in cultures of ASCs before and after induction of endothelial differentiation. In contrast to adipose tissue-derived endothelial (CD31(+)) cells, freshly isolated ASCs display a heavily methylated CD31 promoter and a mosaically methylated CD144 promoter despite basal transcription of both genes. Methylation state of both promoters remains globally stable upon culture. Endothelial stimulation of ASCs in methylcellulose elicits phenotypic changes, marginal upregulation of CD31, and CD144 expression and restrictive induction of a CD31(+)CD144(+) immunophenotype. These events are accompanied by discrete changes in CpG methylation in CD31 and CD144 promoters; however, no global demethylation that marks CD31(+) cells and human umbilical vein endothelial cells occurs. Immunoselection of CD31(+) cells after endothelial stimulation reveals consistent demethylation of one CpG immediately 3' of the transcription start site of the CD31 promoter. Adipogenic or osteogenic differentiation maintains CD31 and CD144 methylation patterns of undifferentiated cells. Methylation profiles of CD31 and CD144 promoters suggest a limited commitment of ASCs to the endothelial lineage. This contrasts with the reported hypomethylation of adipogenic promoters, which reflects a propensity of ASCs toward adipogenic differentiation. Analysis of CpG methylation at lineage-specific promoters provides a robust assessment of epigenetic commitment of stem cells to a specific lineage.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/fisiología , Fosfatos de Dinucleósidos/genética , Endotelio Vascular/citología , Regiones Promotoras Genéticas , Células Madre/citología , Células Madre/fisiología , Tejido Adiposo/fisiología , Antígenos CD , Humanos , Inmunofenotipificación , Metilación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Venas Umbilicales
6.
Aquaculture ; 267(1): 269-283, 2007 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32336810

RESUMEN

Gene expression was studied in Atlantic cod fed two different diets, fish meal (FM) and dehulled and extracted soybean meal (SBM). RNA was isolated from the distal part of the mid-intestine of Atlantic cod and suppression subtractive hybridization (SSH) was employed to screen for genes that showed changes in expression in response to the two dietary treatments. We made a cDNA subtracted library, isolated and sequenced 192 clones. Identification of 157 clones was predicted by BLAST. Most of the clones were previously unidentified in cod. Expression of 12 selected clones was further studied by quantitative PCR. Expression of four clones showing similarity to aminopeptidase N, transcobalamin I precursor, cytochrome P450 3A40, and ras-related nuclear protein was significantly up regulated in intestine of cod fed SBM compared to cod fed FM. A trend towards up regulation of a clone with similarity to fatty acid binding protein in SBM-fed cod was also observed. No significant differences in expression were observed for: transmembrane 4 superfamily protein member, polypeptide N-acetylgalactosaminyltransferase, glutathione peroxidase, peroxiredoxin 4, SEC61, F-BOX, and 14-3-3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...