Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Reprod ; 18(1): e20200028, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34122648

RESUMEN

Extracellular vesicles are nanoparticles secreted by cell and have been proposed as suitable markers to identify competent embryos produced in vitro. Characterizing EVs secreted by individual embryos is challenging because culture medium itself contributes to the pool of nanoparticles that are co-isolated. To avoid this, culture medium must be depleted of nanoparticles that are present in natural protein source. The aim of this study was to evaluate if the culture medium subjected to nanoparticle depletion can support the proper in vitro development of bovine embryos. Zygotes were cultured in groups on depleted or control medium for 8 days. Nanoparticles from the medium were characterized by their morphology, size and expression of EVs surface markers. Isolated nanoparticles were labelled and added to depleted medium containing embryos at different developmental stages and evaluated after 24 hours at 2, 8-16 cells, morula and blastocyst stages. There were no statistical differences on blastocyst rate at day 7 and 8, total cell count neither blastocyst diameter between groups. However, morphological quality was better in blastocysts cultured in non-depleted medium and the expression of SOX2 was significantly lower whereas NANOG expression was significantly higher. Few nanoparticles from medium had a typical morphology of EVs but were positive to specific surface markers. Punctuated green fluorescence near the nuclei of embryonic cells was observed in embryos from all developmental stages. In summary, nanoparticles from culture medium are internalized by in vitro cultured bovine embryos and their depletion affects the capacity of medium to support the proper embryo development.

2.
Zygote ; 29(2): 138-149, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33118919

RESUMEN

Human embryos generated in vitro have a high incidence of chromosomal abnormalities that negatively affect pregnancy rate. Embryos generated in vitro secrete extracellular vesicles (EVs) into the culture medium that could be used potentially as indicators of embryo competence. This research aimed to evaluate the concentration and size of EVs and their gDNA content as an indicator of developmental competence in human embryos. Human embryos generated by intracytoplasmic sperm injection (ICSI) were classified morphologically as of either TOP, FAIR or POOR quality. Culture medium and developmentally arrested embryos (which were not able to be used for embryo transfer) were collected. Microvesicles, exosomes (MV/Exo) and apoptotic bodies (ABs) were isolated from culture medium. Nanoparticle tracking analysis (NTA) and array comparative genomic hybridization (aCGH) analysis were performed to evaluate EVs and their gDNA content. From NTA, the diameter (mean) of MVs/Exo from TOP quality embryos was higher (112.17 nm) compared with that of FAIR (108.02) and POOR quality embryos (102.78 nm) (P < 0.05). aCGH analysis indicated that MVs/Exo and ABs carried gDNA with the presence of 23 chromosome pairs. However, when arrested embryos were compared with their respective MVs/Exo and ABs, the latter had an increased rate of chromosomal abnormalities (24.9%) compared with embryos (8.7%) (P < 0.05). In conclusion, the size of EVs from culture medium might be an alternative for evaluating competence of human embryos, however more studies are needed to validate the use of gDNA from EVs as an indicator of embryo competence.


Asunto(s)
Técnicas de Cultivo de Embriones , Vesículas Extracelulares , Blastocisto , Hibridación Genómica Comparativa , Embrión de Mamíferos , Humanos
3.
Reproduction ; 158(6): 477-492, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600718

RESUMEN

Extracellular vesicles (EVs) secreted by blastocysts may be clinically relevant, as indicator of embryo viability on in vitro fertilization. We tested if the characteristics of EVs secreted during blastulation are related to embryo viability. Morulae were individually cultured in SOF media depleted of EVs until day 7.5 post IVF. Viable embryos were determined by a system of extended in vitro culture of bovine embryos until day 11 (post-hatching development). Afterward, a retrospective classification of blastocyst and culture media was performed based on blastulation time (early blastulation (EB) or late blastulation (LB)) and post-hatching development at day 11 (viable (V) or non-viable embryo (NV)). A total of 254 blastocysts and their culture media were classified in four groups (V-EB, NV-EB, V-LB, NV-LB). Group V-EB had a larger blastocyst diameter (170.8 µm), higher proportion of good-quality blastocysts (77%) and larger mean size of population of EVs (122.9 nm), although the highest concentration of EVs (5.75 × 109 particles/mL) were in group NV-EB. Furthermore, small RNA sequencing detected two biotypes, miRNA (86-91%) and snoRNA (9-14%), with a total of 182 and 32 respectively. In differential expression analysis of miRNAs between V versus NV blastocysts, there were 12 miRNAs upregulated and 15 miRNAs downregulated. Binary logistic regression was used to construct a non-invasive novel model to select viable embryos, based on a combination of variables of blastocyst morphokinetics and EVs characteristics, the ROC-AUC was 0.853. We concluded that characteristics of EVs secreted during blastulation vary depending on embryo quality.


Asunto(s)
Blastocisto/citología , Embrión de Mamíferos/citología , Desarrollo Embrionario , Vesículas Extracelulares/metabolismo , Fertilización In Vitro , MicroARNs/genética , Animales , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Técnicas de Cultivo de Embriones , Transferencia de Embrión , Embrión de Mamíferos/metabolismo , Vesículas Extracelulares/genética , Femenino , Embarazo , Índice de Embarazo , ARN Pequeño no Traducido/genética
4.
PLoS One ; 12(5): e0178306, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542562

RESUMEN

Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture media. Data suggest that characteristics of the population of EVs vary depending on embryo competence.


Asunto(s)
Blastocisto/fisiología , Vesículas Extracelulares/fisiología , Animales , Bovinos , Medios de Cultivo , Técnicas de Cultivo de Embriones/métodos , Vesículas Extracelulares/ultraestructura , Técnicas In Vitro , Microscopía Electrónica de Transmisión , Nanopartículas/metabolismo
5.
Theriogenology ; 87: 25-35, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27616216

RESUMEN

In the domestic cat, the efficiency of in vitro embryo production systems is negatively affected during the nonbreeding season. The objective of this research was to evaluate the effect of FSH stimulation in anestrous cats, on quality of cumulus-oocyte complexes (COCs) and in vitro developmental competence after parthenogenetic activation. To accomplish this purpose, anestrous cats were grouped into: (1) FSH treated (serial doses of 5 mg of porcine FSH each, every 24 hours, for 4 days) and (2) untreated control. The COCs were classified morphologically and a proportion of grade I and II COCs was used for expression analysis of FSHR, LHCGR, EGFR, PTGS2, EGR1, GDF9, and GATM by RT-qPCR. In addition, another proportion of grade I and II COCs was matured in vitro and used for parthenogenetic activation. After 8 days in culture, blastocyst and hatching blastocyst rates were assessed, and the expression of OCT4, SOX2, NANOG, CDX2, and GATA6 was evaluated. The COCs in the FSH group had an enhanced quality, a higher expression of LHCGR and a lower expression of GATM than did COCs from the control group (P < 0.05). Furthermore, embryos in the FSH group had increased blastocyst and hatching blastocyst rates, and those embryos had a higher expression of OCT4 and GATA than their counterparts from the control group (P < 0.05). In conclusion, ovarian stimulation of anestrous cats with FSH improved quality and increased the expression of LHCGR in COCs. The enhanced in vitro developmental competence, after parthenogenetic activation of oocytes from FSH-treated cats, coincided with an increased expression of OCT4 and GATA6 in blastocysts and hatching blastocysts.


Asunto(s)
Anestro/efectos de los fármacos , Gatos/fisiología , Hormona Folículo Estimulante/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Oocitos/fisiología , Partenogénesis/efectos de los fármacos , Animales , Biomarcadores , Blastocisto/efectos de los fármacos , Blastocisto/fisiología , Gatos/embriología , Células del Cúmulo , Femenino , Ovario/efectos de los fármacos , Ovario/fisiología , ARN/genética , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
6.
Zygote ; 24(1): 18-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25496989

RESUMEN

Embryo splitting might be used to increase offspring yield and for molecular analysis of embryo competence. How splitting affects developmental potential of embryos is unknown. This research aimed to study the effect of bovine blastocyst splitting on morphological and gene expression homogeneity of demi-embryos and on embryo competence during elongation. Grade I bovine blastocyst produced in vitro were split into halves and distributed in nine groups (3 × 3 setting according to age and stage before splitting; age: days 7-9; stage: early, expanded and hatched blastocysts). Homogeneity and survival rate in vitro after splitting (12 h, days 10 and 13) and the effect of splitting on embryo development at elongation after embryo transfer (day 17) were assessed morphologically and by RT-qPCR. The genes analysed were OCT4, SOX2, NANOG, CDX2, TP1, TKDP1, EOMES, and BAX. Approximately 90% of split embryos had a well conserved defined inner cell mass (ICM), 70% of the halves had similar size with no differences in gene expression 12 h after splitting. Split embryos cultured further conserved normal and comparable morphology at day 10 of development; this situation changes at day 13 when embryo morphology and gene expression differed markedly among demi-embryos. Split and non-split blastocysts were transferred to recipient cows and were recovered at day 17. Fifty per cent of non-split embryos were larger than 100 mm (33% for split embryos). OCT4, SOX2, TP1 and EOMES levels were down-regulated in elongated embryos derived from split blastocysts. In conclusion, splitting day-8 blastocysts yields homogenous demi-embryos in terms of developmental capability and gene expression, but the initiation of the filamentous stage seems to be affected by the splitting.


Asunto(s)
Blastocisto/citología , Regulación del Desarrollo de la Expresión Génica , Animales , Blastocisto/fisiología , Bovinos , Técnicas de Cultivo de Embriones , Transferencia de Embrión , Femenino , Fertilización In Vitro , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...