Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Noncoding RNA ; 10(2)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668384

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-ß, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.

2.
Biochem Genet ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294590

RESUMEN

Recent research has shown that Doublecortin-like kinase 1 (DCLK1) is overexpressed in different types of cancer. It has recently been described as a cancer stem cells (CSCs) marker, is associated with carcinogenesis, and positively correlates with infiltration of multiple immune cell types in some cancers. However, studies focused on assessing DCLK1 expression in HCC are limited, and the role of DCLK1 in HCC tumor immunity remains to be determined. In this study, we used a modified model of the resistant hepatocyte (MRHM) to evaluate DCLK1 expression in HCC. Furthermore, DCLK1 expression in HCC was analyzed using TIMER 2.0, UALCAN, GEPIA, GEO, and HPA web-based tools. Correlations between DCLK1 expression and clinicopathological factors in patients were analyzed using the UALCAN web-based tool. Finally, correlations between DCLK1 and immune infiltrates were investigated using the TIMER 2.0 and TISIDB web-based tools. The results showed that DCLK1 is significantly overexpressed during progression of the HCC carcinogenic process in the MRHM. DCLK1 is overexpressed in HCC according to multiple publics web-based tools, and its overexpression is associated with cancer stage. Furthermore, DCLK1 expression was correlated with infiltration levels of multiple immune cells, immunomodulatory factors, immunoinhibitors, MHC molecules, chemokines, receptors, and immune cell-specific markers. These results suggest that DCLK1 is a potential prognostic biomarker that determines cancer progression and correlates with immune cell infiltration in HCC.

3.
Toxicol Mech Methods ; 34(4): 398-407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38083799

RESUMEN

Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.

4.
Adv Respir Med ; 91(5): 407-431, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887075

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible disease with a high mortality rate worldwide. However, the etiology and pathogenesis of IPF have not yet been fully described. Moreover, lung cancer is a significant complication of IPF and is associated with increased mortality. Nevertheless, identifying common genes involved in developing IPF and its progression to lung cancer remains an unmet need. The present study aimed to identify hub genes related to the development of IPF by meta-analysis. In addition, we analyzed their expression and their relationship with patients' progression in lung cancer. METHOD: Microarray datasets GSE24206, GSE21369, GSE110147, GSE72073, and GSE32539 were downloaded from Gene Expression Omnibus (GEO). Next, we conducted a series of bioinformatics analysis to explore possible hub genes in IPF and evaluated the expression of hub genes in lung cancer and their relationship with the progression of different stages of cancer. RESULTS: A total of 1888 differentially expressed genes (DEGs) were identified, including 1105 upregulated and 783 downregulated genes. The 10 hub genes that exhibited a high degree of connectivity from the PPI network were identified. Analysis of the KEGG pathways showed that hub genes correlate with pathways such as the ECM-receptor interaction. Finally, we found that these hub genes are expressed in lung cancer and are associated with the progression of different stages of lung cancer. CONCLUSIONS: Based on the integration of GEO microarray datasets, the present study identified DEGs and hub genes that could play an essential role in the pathogenesis of IPF and its association with the development of lung cancer in these patients, which could be considered potential diagnostic biomarkers or therapeutic targets for the disease.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Perfilación de la Expresión Génica , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Biología Computacional
5.
Iran J Basic Med Sci ; 26(7): 760-767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396951

RESUMEN

Objectives: Systemic sclerosis (SSc) is an autoimmune disease of unknown etiology with a high mortality rate. Renal crisis has been reported as one of the predictors of early mortality in these patients. The present study was performed to evaluate bleomycin-induced SSc using an osmotic minipump as a possible model for the analysis of renal damage in SSc. Materials and Methods: Male CD1 mice were implanted with osmotic minipumps loaded with saline or bleomycin and sacrificed at 6 and 14 days. Histopathological analysis was performed through hematoxylin and eosin (H&E) and Masson's trichrome staining. The expression of endothelin 1 (ET-1), inducible nitric oxide synthase (iNOS), transforming growth factor ß (TGF-ß), and 8-hydroxy-2-deoxyguanosine (8-OHdG) was also evaluated by immunohistochemistry. Results: The administration of bleomycin induced a decrease in the length of Bowman's space (3.6 µm, P<0.001); an increase in collagen deposition (14.6%, P<0.0001); and an increase in the expression of ET-1 (7.5%, P<0.0001), iNOS (10.8%, P<0.0001), 8-OHdG (161 nuclei, P<0.0001), and TGF-ß (2.4% µm, P<0.0001) on Day 6. On Day 14, a decrease in the length of Bowman's space (2.6 µm, P<0.0001); increased collagen deposition (13.4%, P<0.0001); and increased expression of ET-1 (2.7%, P<0.001), iNOS (10.1%, P<0.0001), 8-OHdG (133 nuclei, P<0.001), and TGF-ß (0.6%, P<0.0001) were also observed. Conclusion: Systemic administration of bleomycin via an osmotic minipump produces histopathological changes in the kidneys, similar to kidney damage in SSc. Therefore, this model would allow the study of molecular alterations associated with SSc-related renal damage.

6.
Int Immunopharmacol ; 122: 110664, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481854

RESUMEN

Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular compromise and fibrosis. Pulmonary fibrosis, a prominent pulmonary complication in SSc, results in impaired lung function due to excessive accumulation of extracellular matrix components. This study aimed to investigate the effects of coadministration of 3'5-dimaleamylbenzoic acid (AD) and quercetin (Q) on key events in the development and maintenance of pulmonary fibrosis in a bleomycin (BLM)-induced SSc mouse model. The model was induced in CD1 mice through BLM administration using osmotic mini pumps. Subsequently, mice were treated with AD (6 mg/kg) plus Q (10 mg/kg) and sacrificed at 21 and 28 days post BLM administration. Histopathological analysis was performed by hematoxylin and eosin staining and Masson's trichrome staining. Immunohistochemistry was used to determine the expression of proliferation, proinflammatory, profibrotic and oxidative stress markers. The coadministration of AD and Q during the fibrotic phase of the BLM-induced SSc model led to attenuated histological alterations and pulmonary fibrosis, reflected in the recovery of alveolar spaces (30 %, p < 0.01) and decreased collagen deposits (50 %, p < 0.001). This effect was achieved by decreasing the expression of the proliferative markers cyclin D1 (87 %, p < 0.0001) and PCNA (43 %, p < 0.0001), inflammatory markers COX-2 (71 %, p < 0.0001) and iNOS (84 %, p < 0.0001), profibrotic markers α-SMA (80 %, p < 0.0001) and TGF-ß (81 %, p < 0.0001) and the lipid peroxidation marker 4-HNE (43 %, p < 0.01). The antifibrotic effect of this combined therapy is associated with the regulation of proliferation, inflammation and oxidative stress, mechanisms involved in the development and progression of the fibrotic process. Our novel therapeutic strategy is the first approach to propose the use of the combination of prooxidant and antioxidant compounds as a potential strategy for SSc-associated pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Esclerodermia Sistémica , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Quercetina/uso terapéutico , Quercetina/farmacología , Fibrosis , Colágeno/metabolismo , Bleomicina/efectos adversos , Esclerodermia Sistémica/metabolismo , Modelos Animales de Enfermedad , Pulmón/patología
7.
Cells ; 12(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508515

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe idiopathic interstitial pneumonia. It is a chronic and progressive disease with a poor prognosis and is a major cause of morbidity and mortality. This disease has no cure; therefore, there is a clinical need to search for alternative treatments with greater efficacy. In this study, we aimed to evaluate the effect of extracellular vesicles (EVs) from Zingiber officinale (EVZO) in a murine model of bleomycin (BLM)-induced IPF administered through an osmotic minipump. EVZO had an average size of 373 nm and a spherical morphology, as identified by scanning electron microscopy. Label-free proteomic analysis of EVZOs was performed by liquid chromatography coupled to mass spectrometry, and 20 proteins were identified. In addition, we demonstrated the protease activity of EVZO by gelatin-degrading zymography assay and the superoxide dismutase (SOD) activity of EVZO by an enzymatic assay. In the BLM-induced IPF mouse model, nasal administration of 50 µg of EVZO induced recovery of alveolar space size and decreased cellular infiltrate, collagen deposition, and expression of α-SMA-positive cells. Additionally, EVZO inhibited inflammatory markers such as iNOS and COX-2, lipid peroxidation, and apoptotic cells. These results show that EVZO may represent a novel natural delivery mechanism to treat IPF.


Asunto(s)
Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , Zingiber officinale , Ratones , Animales , Bleomicina/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Proteómica , Fibrosis Pulmonar Idiopática/metabolismo , Antiinflamatorios/farmacología , Vesículas Extracelulares/metabolismo , Péptido Hidrolasas
8.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887292

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by parenchymal scarring, leading progressively to alveolar architecture distortion, respiratory failure, and eventually death. Currently, there is no effective treatment for IPF. Previously, 3'5-dimaleamylbenzoic acid (3'5-DMBA), a maleimide, demonstrated pro-apoptotic, anti-inflammatory, and anti-cancer properties; however, its potential therapeutic effects on IPF have not been addressed. Bleomycin (BLM) 100 U/kg was administered to CD1 mice through an osmotic minipump. After fourteen days of BLM administration, 3'5-DMBA (6 mg/kg or 10 mg/kg) and its vehicle carboxymethylcellulose (CMC) were administered intragastrically every two days until day 26. On day 28, all mice were euthanized. The 3'5-DMBA effect was assessed by histological and immunohistochemical staining, as well as by RT-qPCR. The redox status on lung tissue was evaluated by determining the glutathione content and the GSH/GSSG ratio. 3'5-DMBA treatment re-established typical lung histological features and decreased the expression of BLM-induced fibrotic markers: collagen, α-SMA, and TGF-ß1. Furthermore, 3'5-DMBA significantly reduced the expression of genes involved in fibrogenesis. In addition, it decreased reduced glutathione and increased oxidized glutathione content without promoting oxidative damage to lipids, as evidenced by the decrease in the lipid peroxidation marker 4-HNE. Therefore, 3'5-DMBA may be a promising candidate for IPF treatment.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Animales , Antiinflamatorios/farmacología , Bleomicina/efectos adversos , Colágeno/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo
9.
Int J Mol Sci ; 23(9)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35563422

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Línea Celular , Cromatografía Liquida , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
10.
Cells ; 11(7)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406675

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. Lesions in the lung epithelium cause alterations in the microenvironment that promote fibroblast accumulation. Extracellular vesicles (EVs) transport proteins, lipids, and nucleic acids, such as microRNAs (miRNAs). The aim of this study was to characterize the differentially expressed miRNAs in the cargo of EVs obtained from the LL97 and LL29 fibroblast cell lines isolated from IPF lungs versus those derived from the CCD19 fibroblast cell line isolated from a healthy donors. We characterized EVs by ultracentrifugation, Western blotting, and dynamic light scattering. We identified miRNAs by small RNA-seq, a total of 1144 miRNAs, of which 1027 were known miRNAs; interestingly, 117 miRNAs were novel. Differential expression analysis showed that 77 miRNAs were upregulated and 68 were downregulated. In addition, pathway enrichment analyses from the Gene Ontology and Kyoto Encyclopedia of Genomes identified several miRNA target genes in the categories, cell proliferation, regulation of apoptosis, pathways in cancer, and proteoglycans in cancer. Our data reveal that miRNAs contained in EVs cargo could be helpful as biomarkers for fibrogenesis, diagnosis, and therapeutic intervention of IPF.


Asunto(s)
Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , MicroARNs , Comunicación Celular , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , MicroARNs/genética , MicroARNs/metabolismo
11.
Cells ; 11(4)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35203281

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease of unknown etiology. Different types of cells are involved in fibrogenesis, which is persistently physical and molecular stimulation, either directly or by interacting with bioactive molecules and extracellular vesicles (EVs). Current evidence suggests that EVs play an essential role in IPF development. EVs are released by a variety of cells, including fibroblasts, epithelial cells, and alveolar macrophages. In addition, EVs can transport bioactive molecules, such as lipids, proteins, and nucleic acids, which play a pivotal role in cellular communication. Several proposed mechanisms show that an acceptor cell can capture, absorb, or interact with EVs through direct fusion with the plasma membrane, ligand-receptor interaction, and endocytotic process, modifying the target cell. During fibrogenesis, the release of EVs is deregulated, increases the EVs amount, and the cargo content is modified. This alteration is closely associated with the maintenance of the fibrotic microenvironment. This review summarizes the current data on the participation of EVs secreted by the cells playing a critical role in IPF pathogenesis.


Asunto(s)
Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Comunicación Celular , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/terapia , Enfermedades Pulmonares Intersticiales/complicaciones
12.
Biomedicines ; 9(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440261

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible, and highly fatal disease. It is characterized by the increased activation of both fibroblast and myofibroblast that results in excessive extracellular matrix (ECM) deposition. Extracellular vesicles (EVs) have been described as key mediators of intercellular communication in various pathologies. However, the role of EVs in the development of IPF remains poorly understood. This study aimed to characterize the differentially expressed proteins contained within EVs cargo derived from the fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2) isolated from lungs bearing IPF as compared to those derived from the fibroblast cell lines CCD8Lu (NL-1) and CCD19Lu (NL-2) isolated from healthy donors. Isolated EVs were subjected to label-free quantitative proteomic analysis by LC-MS/MS, and as a result, 331 proteins were identified. Differentially expressed proteins were obtained after the pairwise comparison, including all experimental groups. A total of 86 differentially expressed proteins were identified in either one or more comparison groups. Of note, proteins involved in fibrogenic processes, such as tenascin-c (TNC), insulin-like-growth-factor-binding protein 7 (IGFBP7), fibrillin-1 (FBN1), alpha-2 collagen chain (I) (COL1A2), alpha-1 collagen chain (I) (COL1A1), and lysyl oxidase homolog 1 (LOXL1), were identified in EVs cargo isolated from IPF cell lines. Additionally, KEGG pathway enrichment analysis revealed that differentially expressed proteins participate in focal adhesion, PI3K-Akt, and ECM-receptor interaction signaling pathways. In conclusion, our findings reveal that proteins contained within EVs cargo might play key roles during IPF pathogenesis.

13.
Mol Cell Biochem ; 476(12): 4405-4419, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34463938

RESUMEN

Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.


Asunto(s)
Aldehídos/metabolismo , Inflamación/patología , Pulmón/patología , Estrés Oxidativo/fisiología , Fibrosis Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/fisiología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Peroxidación de Lípido , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...