Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611939

RESUMEN

Biosynthesized silver nanoparticles (AgNPs) are widely used in varied applications, which are morphology dependent. Consequently, a morphology-controlled synthesis is mandatory. Although there are several studies focused on the plant extract-based biosynthesis of metallic nanoparticles, the use of extracts obtained from agro-wastes is scant. Furthermore, information regarding morphology modification through the use of additional agents is even more scarce. Thus, in this study, AgNPs were synthesized using a malt extract (ME) obtained from an artisanal beer brewing process residue. Additionally, sodium chloride (NaCl), gum arabic (GA), and talc (T) were used in an attempt to modify the morphology of AgNPs. XRD, DLS, SEM, and TEM results demonstrate that stable AgNPs of different sizes and shapes were synthesized. FTIR, HPLC analysis, and the quantification of total proteins, free amino acids, reducing sugars, and total polyphenols before and after AgNPs synthesis showed that ME biomolecules allowed them to act as a source of reducing and stabilizing agents. Therefore, this study provides evidence that ME can be successfully used to biosynthesize AgNPs. Additionally, the antibacterial activity of AgNPs against Gram-negative and Gram-positive bacteria was evaluated. Results indicate that AgNPs show a higher antibacterial activity against Gram-positive bacteria.


Asunto(s)
Acacia , Nanopartículas del Metal , Cerveza , Plata , Antibacterianos/farmacología , Cloruro de Sodio
2.
Medicina (Kaunas) ; 59(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38003956

RESUMEN

Adipose tissue and liver metabolism play a key role in maintaining body homeostasis; therefore, their impairment conduces a pathological state. Nowadays, occidental lifestyle is a common etiological issue among a variety of chronic diseases, while diet is a unique strategy to prevent obesity and liver metabolism impairment and is a powerful player in the treatment of metabolic-related diseases. Mesoamerican foods are rich in bioactive molecules that enhance and improve adipose tissue and liver performance and represent a prophylactic and therapeutic alternative for disorders related to the loss of homeostasis in the metabolism of these two important tissues.


Asunto(s)
Tejido Adiposo , Enfermedades Metabólicas , Humanos , Tejido Adiposo/metabolismo , Hígado , Obesidad/metabolismo , Enfermedades Metabólicas/metabolismo , Homeostasis , Metabolismo Energético
3.
J Nanobiotechnology ; 21(1): 252, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537575

RESUMEN

BACKGROUND: In recent years, crop production has expanded due to the variety of commercially available species. This increase in production has led to global competition and the search for biostimulant products that improve crop quality and yield. At the same time, agricultural products that protect against diseases caused by phytopathogenic microorganisms are needed. Thus, the green synthesis of selenium nanoparticles (SeNPs) is a proposal for achieving these needs. In this research, SeNPs were synthesized from methanolic extract of Amphipterygium glaucum leaves, and chemically and biologically characterized. RESULTS: The characterization of SeNPs was conducted by ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), electron microscopy transmission (TEM), Dynamic Light Scattering (DLS), energy dispersion X-ray spectroscopy (EDX), and infrared spectrophotometry (FTIR) techniques. SeNPs with an average size of 40-60 nm and spherical and needle-shaped morphologies were obtained. The antibacterial activity of SeNPs against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis was evaluated. The results indicate that the methanolic extracts of A. glaucum and SeNPs presented a high antioxidant activity. The biostimulant effect of SeNPs (10, 20, 50, and 100 µM) was evaluated in vinca (Catharanthus roseus), and calendula (Calendula officinalis) plants under greenhouse conditions, and they improved growth parameters such as the height, the fresh and dry weight of roots, stems, and leaves; and the number of flowers of vinca and calendula. CONCLUSIONS: The antibacterial, antioxidant, and biostimulant properties of SeNPs synthesized from A. glaucum extract demonstrated in this study support their use as a promising tool in crop production.


Asunto(s)
Nanopartículas , Selenio , Antioxidantes/farmacología , Antioxidantes/química , Selenio/farmacología , Selenio/química , Nanopartículas/química , Antibacterianos/farmacología , Extractos Vegetales/farmacología
4.
J Food Sci Technol ; 60(10): 2659-2669, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37599839

RESUMEN

Pathogenic bacteria in food are a public health problem worldwide. Polyphenolic bioactive compounds with antimicrobial activity and antioxidant capacity represent a tangible alternative to overcome this problem. To preserve the biological functions of phenolic compounds such as tannic acid, which has been described to possess antioxidant and antimicrobial activity, this study describes the synthesis of a zinc nanohydroxide to stabilize its properties. Characterization by XRD, FT-IR, SEM, DLS, and UV-vis evidenced the presence of tannic acid in the nanohybrid TA-Zn-LHS which was further confirmed by DPPH, ABTS and FRAP antioxidant activity techniques. Bacterial growth inhibition of Escherichia coli ATCC 8739, Salmonella Enteritidis, and Staphylococcus aureus ATCC 25923 was over 80% at 50 mg/mL of the TA-Zn-LHS and over 90% with Zn-LHS. Antibiofilm evaluation of these same strains showed biofilm formation inhibition > 90% and > 80% for Zn-LHS and TA-Zn-LHS, respectively. The toxicity evaluation of the materials in Artemia salina showed a classification of the materials as non-toxic to slightly toxic in concentrations up to 1 mg/mL. These results allow us to introduce a new nanohybrid useful for food safety with safe biological functions.

5.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234691

RESUMEN

Obesity is an excessive accumulation of fat that exacerbates the metabolic and inflammatory processes. Studies associate these processes with conditions and dysregulation in the intestinal tract, increased concentrations of lipopolysaccharides (LPSs) in the blood, differences in the abundance of intestinal microbiota, and the production of secondary metabolites such as short-chain fatty acids. ß-Caryophyllene (BCP) is a natural sesquiterpene with anti-inflammatory properties and with the potential purpose of fighting metabolic diseases. A diet-induced obesity model was performed in 16-week-old C57BL/6 mice administered with BCP [50 mg/kg]. A reduction in the expression of Claudin-1 was observed in the group with a high-fat diet (HFD), which was caused by the administration of BCP; besides BCP, the phylaAkkermansia and Bacteroidetes decreased between the groups with a standard diet (STD) vs. HFD. Nevertheless, the use of BCP in the STD increased the expression of these phyla with respect to fatty acids; a similar effect was observed, in the HFD group that had a decreasing concentration that was restored with the use of BCP. The levels of endotoxemia and serum leptin increased in the HFD group, while in the HFD + BCP group, similar values were found to those of the STD group, attributing the ability to reduce these in conditions of obesity.


Asunto(s)
Enfermedades Gastrointestinales , Sesquiterpenos , Enfermedades de Transmisión Sexual , Animales , Claudina-1 , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/uso terapéutico , Leptina , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Sesquiterpenos Policíclicos , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Enfermedades de Transmisión Sexual/complicaciones
6.
Vaccines (Basel) ; 10(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36146496

RESUMEN

Avian influenza (AI) is a serious threat to the poultry industry worldwide. Currently, vaccination efforts are based on inactivated, live attenuated, and recombinant vaccines, where the principal focus is on the type of virus hemagglutinin (HA), and the proposed use of recombinant proteins of AI virus (AIV). The use of antigens produced in microalgae is a novel strategy for the induction of an immune response in the mucosal tissue. The capacity of the immune system in poultry, particularly in mucosa, plays an important role in the defense against pathogens. This system depends on a complex relationship between specialized cells and soluble factors, which confer protection against pathogens. Primary lymphoid organs (PLO), as well as lymphocytic aggregates (LA) such as the Harderian gland (HG) and mucosa-associated lymphoid tissue (MALT), actively participate in a local immune response which is mainly secretory IgA (S-IgA). This study demonstrates the usefulness of subunit antigens for the induction of a local and systemic immune response in poultry via ocular application. These findings suggest that a complex protein such as HAr from AIV (H5N2) can successfully induce increased local production of S-IgA and a specific systemic immune response in chickens.

7.
J Med Food ; 25(10): 993-1002, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35792574

RESUMEN

Obesity is an abnormal or excessive accumulation of fat in the body that exacerbates metabolic and inflammatory processes, and impairs the health of afflicted individuals. ß-caryophyllene is a natural sesquiterpene that is a dietary cannabinoid with anti-inflammatory properties and potential activity against metabolic diseases. In the present study, we evaluated the effect of ß-caryophyllene on C57BL/6 mice using a diet-induced obesity model. Male mice were randomly assigned to the following groups over a 16-week period: (1) standard diet as lean control, (2) high-fat diet (HFD) as obese control, and (3) HFD + ß-caryophyllene with ß-caryophyllene at 50 mg/kg. Treatment with ß-caryophyllene improved various metabolic parameters including increased total body weight, fasting glucose levels, oral-glucose tolerance, insulin tolerance, fasting triglycerides, adipocyte hypertrophy, and liver macrovesicular steatosis. ß-caryophyllene also modulated the levels and expression of immune response factors including adiponectin, leptin, insulin, interleukin-6, tumor necrosis factor-a, and Toll-like receptor-4. Our data indicate that chronic supplementation with ß-caryophyllene can improve relevant metabolic and immunological processes in obese mice. This protocol was approved by the Institutional Committee for Care and Use of Laboratory Animals from the University of Guadalajara with protocol code CUCEI/CINV/CICUAL-01/2022.


Asunto(s)
Cannabinoides , Resistencia a la Insulina , Masculino , Ratones , Animales , Leptina , Adiponectina/metabolismo , Interleucina-6 , Cannabinoides/uso terapéutico , Glucemia/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Sesquiterpenos Policíclicos , Ratones Obesos , Resistencia a la Insulina/fisiología , Triglicéridos/metabolismo , Aumento de Peso , Insulina , Antiinflamatorios/uso terapéutico , Factores de Necrosis Tumoral/uso terapéutico
8.
Molecules ; 27(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684374

RESUMEN

In recent years, the increase in antibiotic resistance demands searching for new compounds with antimicrobial activity. Phytochemicals found in plants offer an alternative to this problem. The genus Pelargonium contains several species; some have commercial use in traditional medicine such as P. sinoides, and others such as P. peltatum are little studied but have promising potential for various applications such as phytopharmaceuticals. In this work, we characterized the freeze-dried extracts (FDEs) of five tissues (root, stem, leaf, and two types of flowers) and the ethyl acetate fractions from leaf (Lf-EtOAc) and flower (Fwr-EtOAc) of P. peltatum through the analysis by thin-layer chromatography (T.L.C.), gas chromatography coupled to mass spectrometry (GC-MS), phytochemicals quantification, antioxidant capacity, and antimicrobial activity. After the first round of analysis, it was observed that the FDE-Leaf and FDE-Flower showed higher antioxidant and antimicrobial activities compared to the other FDEs, for which FDE-Leaf and FDE-Flower were fractionated and analyzed in a second round. The antioxidant activity determined by ABTS showed that Lf-EtOAc and Fwr-EtOAc had the lowest IC50 values with 27.15 ± 1.04 and 28.11 ± 1.3 µg/mL, respectively. The content of total polyphenols was 264.57 ± 7.73 for Lf-EtOAc and 105.39 ± 4.04 mg G.A./g FDE for Fwr-EtOAc. Regarding the content of flavonoid, Lf-EtOAc and Fw-EtOAc had the highest concentration with 34.4 ± 1.06 and 29.45 ± 1.09 mg Q.E./g FDE. In addition, the minimum inhibitory concentration (M.I.C.) of antimicrobial activity was evaluated: Lf-EtOAc and Fwr-EtOAc were effective at 31.2 µg/mL for Staphylococcus aureus and 62.5 µg/mL for Salmonella enterica, while for the Enterococcus feacalis strain, Fwr-EtOAc presented 31.2 µg/mL of M.I.C. According to the GC-MS analysis, the main compounds were 1,2,3-Benzenetriol (Pyrogallol), with 77.38% of relative abundance in the Lf-EtOAc and 71.24% in the Fwr-EtOAc, followed by ethyl gallate (13.10%) in the Fwr-EtOAc and (Z)-9-Octadecenamide (13.63% and 6.75%) in both Lf-EtOAc and Fwr-EtOAc, respectively.


Asunto(s)
Antiinfecciosos , Geraniaceae , Pelargonium , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Cromatografía de Gases y Espectrometría de Masas , Pelargonium/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
Molecules ; 27(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35268794

RESUMEN

So far, several studies have focused on the synthesis of metallic nanoparticles making use of extracts from the fruit of the plants from the genus Capsicum. However, as the fruit is the edible, and highly commercial, part of the plant, in this work we focused on the leaves, a part of the plant that is considered agro-industrial waste. The biological synthesis of gold (AuNPs) and silver (AgNPs) nanoparticles using aqueous extracts of root, stem and leaf of Capsicum chinense was evaluated, obtaining the best results with the leaf extract. Gold and silver nanoparticles synthesized using leaf extract (AuNPs-leaf and AgNPs-leaf, respectively) were characterized by UV-visible spectrophotometry (UV-Vis), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Ultra Hight Resolution Scanning Electron Microscopy coupled to Energy-Dispersive X-ray spectroscopy (UHR-SEM-EDX) and Transmission Electron Microscopy (TEM), and tested for their antioxidant and antimicrobial activities. In addition, different metabolites involved in the synthesis of nanoparticles were analyzed. We found that by the use of extracts derived from the leaf, we could generate stable and easy to synthesize AuNPs and AgNPs. The AuNPs-leaf were synthesized using microwave radiation, while the AgNPs-leaf were synthesized using UV light radiation. The antioxidant activity of the extract, determined by ABTS, showed a decrease of 44.7% and 60.7% after the synthesis of the AuNPs-leaf and AgNPs-leaf, respectively. After the AgNPs-leaf synthesis, the concentration of polyphenols, reducing sugars and amino acids decreased by 15.4%, 38.7% and 46.8% in the leaf extract, respectively, while after the AuNPs-leaf synthesis only reducing sugars decreased by 67.7%. These results suggest that these groups of molecules are implicated in the reduction/stabilization of the nanoparticles. Although the contribution of these compounds in the synthesis of the AuNPs-leaf and the AgNPs-leaf was different. Finally, the AgNPs-leaf inhibited the growth of S. aureus, E. coli, S. marcescens and E. faecalis. All of them are bacterial strains of clinical importance due to their fast antibiotic resistance development.


Asunto(s)
Oro
10.
Microorganisms ; 10(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35208815

RESUMEN

Avian influenza (AI) is one of the main threats to the poultry industry worldwide. Vaccination efforts are based on inactivated, live attenuated, and recombinant vaccines, where the virus hemagglutinin (HA) is the main component of any vaccine formulation. This study uses Dunaliella salina to express the AIV HA protein of an H5 virus. D. salina offers a system of feasible culture properties, generally recognized as safe for humans (GRAS), with N-glycosylation and nuclear transformation by Agrobacterium tumefaciens. The cloning and transformation of D. salina cells with the H5HA gene was confirmed by polymerase chain reaction (PCR). SDS-PAGE and Western blot confirmed HA5r protein expression, and the correct expression and biological activity of the HA5r protein were confirmed by a hemagglutination assay (HA). This study proves the feasibility of using a different biological system for expressing complex antigens from viruses. These findings suggest that a complex protein such as HA5r from AIV (H5N2) can be successfully expressed in D. salina.

11.
J Tissue Viability ; 31(1): 173-179, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34774393

RESUMEN

As the skin is the main protective organ of the body, it is exposed to wounds or injuries which carry out a healing process during a period of approximately 15 days depending on the severity of the injury. In the present research, the development of chitosan-based hydrogels loaded with silver nanoparticles and calendula extract (Ch-AgNPs-Ce) was proposed. This can be used to fulfill the hemostatic, anti-infective, antibacterial, healing and anti-inflammatory functions through controlled release of the nanoparticles and calendula extract in substitution of commonly used drugs. The physical properties of the silver nanoparticles were analyzed by UV-visible spectroscopy, scanning and transmission electron microscopy, showing a size between 50 and 100 nm. The antibacterial properties were evaluated by the agar well diffusion method. Antimicrobial testing of the hydrogels showed that the inclusion of silver nanoparticles provides concentration-dependent antibacterial behavior against E. coli and S. aureus. The healing properties of the system were tested in two diabetic patients to whom said hydrogels were placed, obtaining a positive curative result after a few weeks. Therefore, it can be concluded that Ch-AgNPs-Ce hydrogels can achieve healing in chronic or exposed wounds after a period of time which can be used in alternative treatments in patients with poor healing capacity.


Asunto(s)
Quitosano , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Calendula , Quitosano/farmacología , Preparaciones de Acción Retardada , Escherichia coli , Humanos , Hidrogeles/farmacología , Extractos Vegetales , Plata/farmacología , Staphylococcus aureus , Cicatrización de Heridas
12.
Molecules ; 26(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641478

RESUMEN

The use of selenium nanoparticles (SeNPs) in the biomedical area has been increasing as an alternative to the growing bacterial resistance to antibiotics. In this research, SeNPs were synthesized by green synthesis using ascorbic acid (AsAc) as a reducing agent and methanolic extract of Calendula officinalis L. flowers as a stabilizer. Characterization of SeNPs was performed by UV-vis spectrophotometry, infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SeNPs of 40-60 nm and spherical morphologies were obtained. The antibacterial activity of marigold extracts and fractions was evaluated by disk diffusion methodology. The evaluation of SeNPs at different incubation times was performed through the colony-forming unit (CFU) count, in both cases against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis bacteria. Partial antibacterial activity was observed with methanolic extracts of marigold leaves and flowers and total inhibition with SeNPs from 2 h for S. marcescens, 1 h for E. cloacae, and 30 min for A. faecalis. In addition, SeNPs were found to exhibit antioxidant activity. The results indicate that SeNPs present a potentiated effect of both antimicrobial and antioxidant activity compared to the individual use of marigold extracts or sodium selenite (Na2SeO3). Their application emerges as an alternative for the control of clinical pathogens.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Calendula/química , Nanopartículas/administración & dosificación , Extractos Vegetales/metabolismo , Selenio/química , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Humanos , Nanopartículas/química
13.
Sci Rep ; 9(1): 19327, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852938

RESUMEN

Nowadays, there are several approaches reported to accomplish the green synthesis of metal nanoparticles by using bacterial and fungi supernatants or by-products generated by these microorganisms. Therefore, agars as solely reductive regents have started to be used in order to obtain metal nanoparticles. This paper shows the results of the synthesis of gold and silver nanoparticles with different morphology, mainly triangular and truncated triangular, using Eosin Methylene Blue (EMB) agar as reducing agent. To control the reaction process, the necessary activation energy for the reducer was provided by three different techniques: microwave radiation, using a domestic microwave oven, ultraviolet radiation, and heating on a conventional plate. The evolution of the reduction process and stability of the samples was performed by ultraviolet visible spectroscopy. Morphology was carefully analyzed using high-resolution transmission electron microscopy (HRTEM) and Transmission electron microscopy (TEM). A one step synthesis for gold and silver nanoparticles was optimized with an eco-friendly and economic process.

14.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1423-1432, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28803140

RESUMEN

The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer.


Asunto(s)
Secuencia de Bases , Ácidos Hidroxámicos/química , Proteínas Protozoarias/química , Eliminación de Secuencia , Trichomonas vaginalis/enzimología , Triosa-Fosfato Isomerasa/química , Secuencias de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Prueba de Complementación Genética , Ácidos Hidroxámicos/metabolismo , Cinética , Modelos Moleculares , Mutación Puntual , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica , Trichomonas vaginalis/química , Triosa-Fosfato Isomerasa/genética , Triosa-Fosfato Isomerasa/metabolismo
15.
Plant Biotechnol J ; 14(10): 2066-76, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27007496

RESUMEN

Microalgal cultivation that takes advantage of solar energy is one of the most cost-effective systems for the biotechnological production of biofuels, and a range of high value products, including pharmaceuticals, fertilizers and feed. However, one of the main constraints for the cultivation of microalgae is the potential contamination with biological pollutants, such as bacteria, fungi, zooplankton or other undesirable microalgae. In closed bioreactors, the control of contamination requires the sterilization of the media, containers and all materials, which increases the cost of production, whereas open pond systems severely limits the number of species that can be cultivated under extreme environmental conditions to prevent contaminations. Here, we report the metabolic engineering of Chlamydomonas reinhardtii to use phosphite as its sole phosphorus source by expressing the ptxD gene from Pseudomonas stutzeri WM88, which encodes a phosphite oxidoreductase able to oxidize phosphite into phosphate using NAD as a cofactor. Engineered C. reinhardtii lines are capable of becoming the dominant species in a mixed culture when fertilized with phosphite as a sole phosphorus source. Our results represent a new platform for the production of microalgae, potentially useful for both closed photobioreactors and open pond systems without the need for using sterile conditions nor antibiotics or herbicides to prevent contamination with biological pollutants.


Asunto(s)
Reactores Biológicos , Biotecnología/métodos , Ingeniería Genética , Microalgas/crecimiento & desarrollo , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...