Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203225

RESUMEN

PrimPol is a DNA primase/polymerase from the Archaeo-Eukaryotic Primase (AEP) superfamily that enables the progression of stalled replication forks by synthesizing DNA primers ahead of blocking lesions or abnormal structures in the ssDNA template. PrimPol's active site is formed by three AEP-conserved motifs: A, B and C. Motifs A and C of human PrimPol (HsPrimPol) harbor the catalytic residues (Asp114, Glu116, Asp280) acting as metal ligands, whereas motif B includes highly conserved residues (Lys165, Ser167 and His169), which are postulated to stabilize 3' incoming deoxynucleotides (dNTPs). Additionally, other putative nucleotide ligands are situated close to motif C: Lys297, almost invariant in the whole AEP superfamily, and Lys300, specifically conserved in eukaryotic PrimPols. Here, we demonstrate that His169 is absolutely essential for 3'dNTP binding and, hence, for both primase and polymerase activities of HsPrimPol, whereas Ser167 and Lys297 are crucial for the dimer synthesis initiation step during priming, but dispensable for subsequent dNTP incorporation on growing primers. Conversely, the elimination of Lys165 does not affect the overall primase function; however, it is required for damage avoidance via primer-template realignments. Finally, Lys300 is identified as an extra anchor residue to stabilize the 3' incoming dNTP. Collectively, these results demonstrate that individual ligands modulate the stabilization of 3' incoming dNTPs to optimize DNA primer synthesis efficiency during initiation and primer maturation.


Asunto(s)
ADN Primasa , Nucleotidiltransferasas , Humanos , ADN Primasa/genética , Catálisis , Cognición , Cartilla de ADN , Nucleótidos , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales/genética
2.
Nucleic Acids Res ; 49(4): 2179-2191, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33533925

RESUMEN

Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.


Asunto(s)
Arginina/química , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , ADN/biosíntesis , Enzimas Multifuncionales/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Unión Proteica
3.
Enzymes ; 45: 289-310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31627881

RESUMEN

PrimPol is the second primase discovered in eukaryotic cells, whose function is to restart the stalled replication forks during both mitochondrial and nuclear DNA replication. This chapter revises our current knowledge about the mechanism of synthesis of DNA primers by human PrimPol, and the importance of its distinctive Zn-finger domain (ZnFD). After PrimPol forms a binary complex with ssDNA, the formation of the pre-ternary complex strictly requires the presence of Mn2+ ions to stabilize the interaction of the incoming deoxynucleotide at the 3'-site. The capacity to bind both ssDNA template and 3'-deoxynucleotide was shown to reside in the AEP core of PrimPol, with ZnFD being dispensable at these two early steps of the primase reaction. Sugar selection favoring dNTPs versus NTPs at the 3' site is mediated by a specific tyrosine (Tyr100) acting as a steric gate. Besides, a specific glutamate residue (Glu116) conforming a singular A motif (DxE) promotes the use of Mn2+ to stabilize the pre-ternary complex. Mirroring the function of the PriL subunit of dimeric AEP primases, the ZnFD of PrimPol is crucial to stabilize the initiating 5'-nucleotide, specifically interacting with the gamma-phosphate. Such an interaction is crucial to optimize dimer formation and the subsequent translocation events leading to the processive synthesis of a mature DNA primer. Finally, the capacity of PrimPol to tolerate lesions is discussed in the context of its DNA primase function, and its potential as a TLS primase.


Asunto(s)
ADN Primasa/metabolismo , Cartilla de ADN/biosíntesis , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/metabolismo , Humanos
4.
Microbiol Res ; 206: 141-158, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146251

RESUMEN

ArgP is a LysR-type transcriptional regulator (LTTR) that operates with two effector molecules, lysine and arginine, to differentially regulate gene expression. Effector-free ArgP stimulates transcription of all investigated regulon members, except argO, whereas lysine abolishes this effect. Activation of argO, encoding an exporter for arginine and canavanine, is strictly dependent on arginine-bound ArgP. Lysine counteracts this effect and even though lysine-bound ArgP stimulates RNA polymerase recruitment at the argO promoter, the complex is non-productive. It is presently unclear what distinguishes argO from other ArgP targets and how binding of arginine and lysine translates in antagonistic effects on promoter activity. Here we generate high resolution contact maps of effector-free and effector-bound ArgP-DNA interactions and identify the sequence 5'-CTTAT as the consensus recognition motif for ArgP binding. argO is the only operator at which ArgP binding overlaps the -35 promoter element and binding of arginine results in a repositioning of the promoter proximal bound ArgP-arg subunits. This effect was mimicked by the generation of a 10bp insertion mutant (ins-10) in the argO operator that renders its activation by ArgP arginine-independent. ArgP-induced DNA bending of the argO operator by approximately 60° was found to be effector independent. An ArgP:DNA binding stoichiometry of 4:1 indicates binding of four ArgP subunits even to DNA constructs that are truncated for one binding subsite (ΔABS). These results provide insight into the molecular mechanisms of ArgP-mediated regulation and a molecular explanation for the unique arginine-dependence of argO activation that distinguishes this particular ArgP target from all others.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Sistemas de Transporte de Aminoácidos Básicos/genética , Arginina/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Huella de ADN , ADN Bacteriano/genética , Desoxirribonucleasa I , Escherichia coli/enzimología , Lisina/metabolismo , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...