Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Alcohol ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38278499

RESUMEN

Our aim was to evaluate whether alcohol use is associated with changes in the circulating metabolite profile similar to those present in persons with depression. If so, these findings could partially explain the link between alcohol use and depression. We applied a targeted liquid chromatography mass spectrometry method to evaluate correlates between concentrations of 86 circulating metabolites and self-reported alcohol use in a cohort of the non-depressed general population (GP) (n = 247) and a cohort of individuals with major depressive disorder (MDD) (n = 99). Alcohol use was associated with alterations in circulating concentrations of metabolites in both cohorts. Our main finding was that self-reported alcohol use was negatively correlated with serum concentrations of hippuric acid in the GP cohort. In the GP cohort, consumption of six or more doses per week was associated with low hippuric acid concentrations, similar to those observed in the MDD cohort, but in these individuals it was regardless of their level of alcohol use. Reduced serum concentrations of hippuric acid suggest that already moderate alcohol use is associated with depression-like changes in the serum levels of metabolites associated with gut microbiota and liver function; this may be one possible molecular level link between alcohol use and depression.

2.
Science ; 380(6649): eabn9257, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289866

RESUMEN

Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.


Asunto(s)
Envejecimiento , Taurina , Animales , Humanos , Ratones , Envejecimiento/sangre , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Senescencia Celular , Haplorrinos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Taurina/sangre , Taurina/deficiencia , Taurina/farmacología , Suplementos Dietéticos , Daño del ADN/efectos de los fármacos , Telomerasa/metabolismo
3.
J Affect Disord ; 320: 647-655, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208690

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a recurrent disorder that incurs a high societal burden. However, the etiology of MDD remains unclear. The functioning of several systems associated with the etiopathogenesis of MDD, such as inflammatory and stress systems, is partially modulated by the dipeptide carnosine. METHODS: The study comprised 99 MDD patients and 253 non-depressed controls aged 20-71 years. Fasting serum samples were analyzed using ultra-performance liquid chromatography coupled to mass spectrometry to determine the serum levels of carnosine and its constituent, histidine. We compared these metabolites in three different settings: 1) MDD patients vs. non-depressed controls and 2) remitted vs. non-remitted MDD patients, as well as 3) changes in the metabolite levels during the follow-up period within a) the remitted group and b) the non-remitted group. In addition, we assessed the possible effect of medications on the measured metabolites. RESULTS: We observed higher serum levels of carnosine in the MDD group compared to the control group at baseline (OR = 1.895, 95%CI = 1.223-2.937, p = 0.004). Elevated serum levels of carnosine were also associated with a longer duration of the depressive episode (Z = 0.406, p = 0.001). However, the use of any antipsychotic medication (n = 36) was associated with lowered carnosine levels (p = 0.010 for use vs. non-use). At the follow-up, remitted and non-remitted participants displayed no significant differences in their carnosine levels (Z = -0.14, p = 0.891) or histidine (Z = -1.39 p = 0.164). CONCLUSIONS: An increase in circulating carnosine may characterize depressive episodes and may represent a protective homeostatic reaction against MDD-related oxidative stress and inflammation.


Asunto(s)
Carnosina , Trastorno Depresivo Mayor , Humanos , Carnosina/sangre , Histidina/sangre
5.
Anal Chem ; 93(49): 16369-16378, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34859676

RESUMEN

Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.


Asunto(s)
Laboratorios , Lipidómica , Estudios de Cohortes , Humanos , Estándares de Referencia , Análisis Espectral
6.
PLoS Pathog ; 17(9): e1009943, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34555129

RESUMEN

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.


Asunto(s)
Glucólisis/fisiología , Interacciones Huésped-Patógeno/fisiología , Macrófagos/metabolismo , Fagosomas/metabolismo , Salmonelosis Animal/metabolismo , Animales , Perfilación de la Expresión Génica , Metabolómica , Ratones , Salmonella typhimurium/metabolismo
7.
Eur J Hum Genet ; 29(12): 1833-1837, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34305140

RESUMEN

The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenase gene (IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia.


Asunto(s)
Trastornos Distónicos/genética , IMP Deshidrogenasa/genética , Temblor/genética , Adolescente , Adulto , Edad de Inicio , Niño , Trastornos Distónicos/diagnóstico , Femenino , Genes Dominantes , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Temblor/diagnóstico
8.
Geroscience ; 43(6): 2679-2691, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34089174

RESUMEN

Aerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial ß-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


Asunto(s)
Metabolismo Energético , Espectrometría de Masas en Tándem , Tejido Adiposo Blanco/metabolismo , Animales , Cromatografía Liquida , Músculo Esquelético/metabolismo , Ratas
9.
Front Vet Sci ; 7: 554296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195525

RESUMEN

Background: While anecdotal evidence has long claimed that a raw meat-based diet (RMBD) improves the metabolic health of canines, no rigorous scientific study has clarified this issue. Canine atopic dermatitis (CAD) has also been linked to metabolic health, but its relation to diet remains poorly understood. This study investigates whether dietary choice is linked to metabolic health in healthy and CAD-diagnosed canines via targeted serum and urine metabolomic analysis of polar, non-ionic metabolites, as well as whether the underlying CAD condition modulates the response to nutritional intake. Materials and Methods: Serum metabolites of client-owned Staffordshire bull terriers, divided into CAD-diagnosed (n = 14) and healthy (n = 6) cohorts, were studied. Urine metabolites of a subset of the CAD-diagnosed canines (n = 8) were also studied. The canines were split into two cohorts based on diet. The first cohort were fed a commercially available high-fat, moderate-protein, low-carbohydrate RMBD (n = 11, CAD diagnosed n = 8, healthy n = 3). Those in the second cohort were fed a commercially available moderate-fat, moderate-protein, high-carbohydrate kibble diet (KD) (n = 9: CAD diagnosed n = 6, healthy n = 3). The diet intervention period lasted approximately 4.5 months (median 135 days). Statistical analyses of the serum profiles across all dogs (n = 20) and the urine profiles of the CAD-diagnosed subset (n = 8) were performed. Results and Discussion: The KD cohort was found to have higher concentrations of methionine than the RMBD cohort, both in serum (all dogs, p < 0.0001) and in urine (CAD-only cohort, p < 0.0002), as well as cystathionine and 4-pyridoxic acid. Methionine plays important roles in homocysteine metabolism, and elevated levels have been implicated in various pathologies. The CAD (n = 14) cohort dogs showed starker metabolic changes in response to diet regarding these pathways compared to the healthy (n = 6) cohort. However, there was no significant change in CAD severity as a result of either diet. Likely due to the higher meat content of the RMBD, higher concentrations of several carnitines and creatine were found in the RMBD cohort. Citrulline was found in higher concentrations in the KD cohort. Our findings provide insight into the relationship between diet and the serum and urine metabolite profiles of canines. They also suggest that neither diet significantly affected CAD severity.

10.
Cancers (Basel) ; 12(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172086

RESUMEN

Cancer alters cell metabolism. How these changes are manifested in the metabolite cargo of cancer-derived extracellular vesicles (EVs) remains poorly understood. To explore these changes, EVs from prostate, cutaneous T-cell lymphoma (CTCL), colon cancer cell lines, and control EVs from their noncancerous counterparts were isolated by differential ultracentrifugation and analyzed by nanoparticle tracking analysis (NTA), electron microscopy (EM), Western blotting, and liquid chromatography-mass spectrometry (LC-MS). Although minor differences between the cancerous and non-cancerous cell-derived EVs were observed by NTA and Western blotting, the largest differences were detected in their metabolite cargo. Compared to EVs from noncancerous cells, cancer EVs contained elevated levels of soluble metabolites, e.g., amino acids and B vitamins. Two metabolites, proline and succinate, were elevated in the EV samples of all three cancer types. In addition, folate and creatinine were elevated in the EVs from prostate and CTCL cancer cell lines. In conclusion, we present the first evidence in vitro that the altered metabolism of different cancer cells is reflected in common metabolite changes in their EVs. These results warrant further studies on the significance and usability of this metabolic fingerprint in cancer.

11.
Am J Physiol Endocrinol Metab ; 319(3): E494-E508, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32691632

RESUMEN

Hydroxysteroid 17ß dehydrogenase 12 (HSD17B12) is suggested to be involved in the elongation of very long chain fatty acids. Previously, we have shown a pivotal role for the enzyme during mouse development. In the present study we generated a conditional Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding mice homozygous for a floxed Hsd17b12 allele with mice expressing the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene inactivation was induced by administering tamoxifen to adult mice. The gene inactivation led to a 20% loss of body weight within 6 days, associated with drastic reduction in both white (83% males, 75% females) and brown (65% males, 60% females) fat, likely due to markedly reduced food and water intake. Furthermore, the knockout mice showed sickness behavior and signs of liver toxicity, specifically microvesicular hepatic steatosis and increased serum alanine aminotransferase (4.6-fold in males, 7.7-fold in females). The hepatic changes were more pronounced in females than males. Proinflammatory cytokines, such as interleukin-6 (IL-6), IL-17, and granulocyte colony-stimulating factor, were increased in the HSD17B12cKO mice indicating an inflammatory response. Serum lipidomics study showed an increase in the amount of dihydroceramides, despite the dramatic overall loss of lipids. In line with the proposed role for HSD17B12 in fatty acid elongation, we observed accumulation of ceramides, dihydroceramides, hexosylceramides, and lactosylceramides with shorter than 18-carbon fatty acid side chains in the serum. The results indicate that HSD17B12 is essential for proper lipid homeostasis and HSD17B12 deficiency rapidly results in fatal systemic inflammation and lipolysis in adult mice.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/fisiología , Homeostasis/fisiología , 17-Hidroxiesteroide Deshidrogenasas/genética , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Conducta Animal , Peso Corporal/genética , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Conducta Alimentaria , Femenino , Homeostasis/genética , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lipidómica , Hepatopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Caracteres Sexuales , Tamoxifeno/farmacología
14.
Cell Metab ; 31(6): 1078-1090.e5, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32386566

RESUMEN

NAD+ is a redox-active metabolite, the depletion of which has been proposed to promote aging and degenerative diseases in rodents. However, whether NAD+ depletion occurs in patients with degenerative disorders and whether NAD+ repletion improves their symptoms has remained open. Here, we report systemic NAD+ deficiency in adult-onset mitochondrial myopathy patients. We administered an increasing dose of NAD+-booster niacin, a vitamin B3 form (to 750-1,000 mg/day; clinicaltrials.govNCT03973203) for patients and their matched controls for 10 or 4 months, respectively. Blood NAD+ increased in all subjects, up to 8-fold, and muscle NAD+ of patients reached the level of their controls. Some patients showed anemia tendency, while muscle strength and mitochondrial biogenesis increased in all subjects. In patients, muscle metabolome shifted toward controls and liver fat decreased even 50%. Our evidence indicates that blood analysis is useful in identifying NAD+ deficiency and points niacin to be an efficient NAD+ booster for treating mitochondrial myopathy.


Asunto(s)
Miopatías Mitocondriales/metabolismo , Músculos/metabolismo , NAD/metabolismo , Niacina/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miopatías Mitocondriales/patología , Músculos/patología , NAD/deficiencia , Adulto Joven
15.
Front Psychiatry ; 11: 403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32458831

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS), a putative treatment for depression, has been proposed to affect peripheral metabolism. Metabolic products from brain tissue may also cross the blood-brain barrier, reflecting the conditions in the brain. However, there are no previous data regarding the effect of tDCS on circulating metabolites. OBJECTIVE: To determine whether five daily sessions of tDCS modulate peripheral metabolites in healthy adult men. METHODS: This double-blind, randomized controlled trial involved 79 healthy males (aged 20-40 years) divided into two groups, one receiving tDCS (2 mA) and the other sham stimulated. The anode was placed over the left dorsolateral prefrontal cortex and the cathode over the corresponding contralateral area. Venous blood samples were obtained before and after the first stimulation session, and after the fifth stimulation session. Serum levels of 102 metabolites were determined by mass spectrometry. The results were analysed with generalised estimating equations corrected for the family-wise error rate. In addition, we performed power calculations estimating sample sizes necessary for future research. RESULTS: TDCS-related variation in serum metabolite levels was extremely small and statistically non-significant. Power calculations indicated that for the observed variation to be deemed significant, samples sizes of up to 11,000 subjects per group would be required, depending on the metabolite of interest. CONCLUSION: Our study found that five sessions of tDCS induced no major effects on peripheral metabolites among healthy men. These observations support the view of tDCS as a safe treatment that does not induce significant changes in the measured peripheral metabolites in healthy male subjects.

16.
Metabolites ; 10(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178322

RESUMEN

The tricarboxylic acid (TCA) cycle is a central part of carbon and energy metabolism, also connecting to glycolysis, amino acid, and lipid metabolism. The quantitation of the TCA cycle intermediate within one method is lucrative due to the interest in central carbon metabolism profiling in cells and tissues. In addition, TCA cycle intermediates in serum have been discovered to correspond as biomarkers to various underlying pathological conditions. In this work, an Liquid Chromatography-Mass Spectrometry/Mass Spectrometry-based quantification method is developed and validated, which takes advantage of fast, specific, sensitive, and cost-efficient precipitation extraction. Chromatographic separation is achieved while using Atlantis dC18 2.1 mm × 100 mm, particle size 3-µm of Waters column with a gradient elution mobile phase while using formic acid in water (0.1% v/v) and acetonitrile. Linearity was clearly seen over a calibration range of: 6.25 to 6400 ng/mL (r2 > 0.980) for malic acid; 11.72 to 12,000 ng/mL (r2 > 0.980) for cis-aconitic acid and L-aspartic acid; 29.30 to 30,000 ng/mL (r2 > 0.980) for isocitric acid, l-serine, and l-glutamic acid; 122.07 to 125,000 ng/mL (r2 > 0.980) for citric acid, glycine, oxo-glutaric acid, l-alanine, and l-glutamine; 527.34 to 540,000 ng/mL (r2 > 0.980) for l-lactic acid; 976.56 to 1,000,000 ng/mL (r2 > 0.980) for d-glucose; 23.44 to 24,000 ng/mL (r2 > 0.980) for fumaric acid and succinic acid; and, 244.14 to 250,000 ng/mL (r2 > 0.980) for pyruvic acid. Validation was carried out, as per European Medicines Agency (EMA) "guidelines on bioanalytical method validation", for linearity, precision, accuracy, limit of detection (LOD), limit of quantification (LLOQ), recovery, matrix effect, and stability. The recoveries from serum and tissue were 79-119% and 77-223%, respectively. Using this method, we measured TCA intermediates in serum, plasma (NIST 1950 SRM), and in mouse liver samples. The concentration found in NIST SRM 1950 (n = 6) of glycine (246.4 µmol/L), l-alanine (302.4 µmol/L), and serine (92.9 µmol/L).

17.
Sci Rep ; 9(1): 16054, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690790

RESUMEN

In a previous study, we proposed that age-related mitochondrial respiration defects observed in elderly subjects are partially due to age-associated downregulation of nuclear-encoded genes, including serine hydroxymethyltransferase 2 (SHMT2), which is involved in mitochondrial one-carbon (1C) metabolism. This assertion is supported by evidence that the disruption of mouse Shmt2 induces mitochondrial respiration defects in mouse embryonic fibroblasts generated from Shmt2-knockout E13.5 embryos experiencing anaemia and lethality. Here, we elucidated the potential mechanisms by which the disruption of this gene induces mitochondrial respiration defects and embryonic anaemia using Shmt2-knockout E13.5 embryos. The livers but not the brains of Shmt2-knockout E13.5 embryos presented mitochondrial respiration defects and growth retardation. Metabolomic profiling revealed that Shmt2 deficiency induced foetal liver-specific downregulation of 1C-metabolic pathways that create taurine and nucleotides required for mitochondrial respiratory function and cell division, respectively, resulting in the manifestation of mitochondrial respiration defects and growth retardation. Given that foetal livers function to produce erythroblasts in mouse embryos, growth retardation in foetal livers directly induced depletion of erythroblasts. By contrast, mitochondrial respiration defects in foetal livers also induced depletion of erythroblasts as a consequence of the inhibition of erythroblast differentiation, resulting in the manifestation of anaemia in Shmt2-knockout E13.5 embryos.


Asunto(s)
Anemia/embriología , Enfermedades Fetales/metabolismo , Feto/embriología , Transferasas de Hidroximetilo y Formilo/deficiencia , Hepatopatías/embriología , Enfermedades Metabólicas/embriología , Anemia/genética , Anemia/patología , Animales , Enfermedades Fetales/genética , Enfermedades Fetales/patología , Feto/patología , Técnicas de Inactivación de Genes , Transferasas de Hidroximetilo y Formilo/metabolismo , Hepatopatías/genética , Hepatopatías/patología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/patología , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología
18.
Cell Metab ; 30(6): 1040-1054.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31523008

RESUMEN

Mitochondrial dysfunction elicits stress responses that safeguard cellular homeostasis against metabolic insults. Mitochondrial integrated stress response (ISRmt) is a major response to mitochondrial (mt)DNA expression stress (mtDNA maintenance, translation defects), but the knowledge of dynamics or interdependence of components is lacking. We report that in mitochondrial myopathy, ISRmt progresses in temporal stages and development from early to chronic and is regulated by autocrine and endocrine effects of FGF21, a metabolic hormone with pleiotropic effects. Initial disease signs induce transcriptional ISRmt (ATF5, mitochondrial one-carbon cycle, FGF21, and GDF15). The local progression to 2nd metabolic ISRmt stage (ATF3, ATF4, glucose uptake, serine biosynthesis, and transsulfuration) is FGF21 dependent. Mitochondrial unfolded protein response marks the 3rd ISRmt stage of failing tissue. Systemically, FGF21 drives weight loss and glucose preference, and modifies metabolism and respiratory chain deficiency in a specific hippocampal brain region. Our evidence indicates that FGF21 is a local and systemic messenger of mtDNA stress in mice and humans with mitochondrial disease.


Asunto(s)
ADN Mitocondrial/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Mitocondrias/metabolismo , Miopatías Mitocondriales/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción Activadores/metabolismo , Animales , Línea Celular , ADN Mitocondrial/genética , Escherichia coli , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/genética , Miopatías Mitocondriales/genética , Eliminación de Secuencia , Estrés Fisiológico/genética
19.
Sci Rep ; 9(1): 10208, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308419

RESUMEN

Pancreatic cystic neoplasms (PCNs) are a highly prevalent disease of the pancreas. Among PCNs, Intraductal Papillary Mucinous Neoplasms (IPMNs) are common lesions that may progress from low-grade dysplasia (LGD) through high-grade dysplasia (HGD) to invasive cancer. Accurate discrimination of IPMN-associated neoplastic grade is an unmet clinical need. Targeted (semi)quantitative analysis of 100 metabolites and >1000 lipid species were performed on peri-operative pancreatic cyst fluid and pre-operative plasma from IPMN and serous cystic neoplasm (SCN) patients in a pancreas resection cohort (n = 35). Profiles were correlated against histological diagnosis and clinical parameters after correction for confounding factors. Integrated data modeling was used for group classification and selection of the best explanatory molecules. Over 1000 different compounds were identified in plasma and cyst fluid. IPMN profiles showed significant lipid pathway alterations compared to SCN. Integrated data modeling discriminated between IPMN and SCN with 100% accuracy and distinguished IPMN LGD or IPMN HGD and invasive cancer with up to 90.06% accuracy. Free fatty acids, ceramides, and triacylglycerol classes in plasma correlated with circulating levels of CA19-9, albumin and bilirubin. Integrated metabolomic and lipidomic analysis of plasma or cyst fluid can improve discrimination of IPMN from SCN and within PMNs predict the grade of dysplasia.


Asunto(s)
Lipidómica/métodos , Metabolómica/métodos , Neoplasias Pancreáticas/clasificación , Adenocarcinoma Mucinoso/patología , Adulto , Anciano , Biomarcadores de Tumor , Carcinoma Ductal Pancreático/patología , Carcinoma Papilar/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Páncreas/metabolismo , Pancreatectomía/métodos , Quiste Pancreático/clasificación , Quiste Pancreático/patología , Neoplasias Intraductales Pancreáticas/patología , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...