Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 4767, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958743

RESUMEN

Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis.


Asunto(s)
Artritis Psoriásica/inmunología , Linfocitos T CD8-positivos/inmunología , Selección Clonal Mediada por Antígenos , Receptores Mensajeros de Linfocitos/metabolismo , Líquido Sinovial/inmunología , Artritis Psoriásica/sangre , Linfocitos T CD8-positivos/metabolismo , Perfilación de la Expresión Génica , Humanos , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Mensajeros de Linfocitos/genética , Análisis de la Célula Individual , Membrana Sinovial/inmunología
2.
Oncotarget ; 9(31): 21696-21714, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29774096

RESUMEN

The molecular processes and proteomic markers leading to tumor progression (TP) in cervical cancer (CC) are either unknown or only partially understood. TP affects metabolic and regulatory mechanisms that can be identified as proteomic changes. To identify which proteins are differentially expressed and to understand the mechanisms of cancer progression, we analyzed the dynamics of the tumor proteome in CC cell lines. This analysis revealed two proteins that are up-regulated during TP, GSTM3 and GSTP1. These proteins are involved in cell maintenance, cell survival and the cellular stress response via the NF-κB and MAP kinase pathways during TP. Furthermore, GSTM3 and GSTP1 knockdown showed that evasion of apoptosis was affected, and tumor proliferation was significantly reduced. Our data indicate the critical role of GST proteins in the regulation and progression of cervical cancer cells. Hence, we suggest GSTM3 and GSTP1 as novel biomarkers and potential therapeutic targets for treating cervical cancer. SIGNIFICANCE: CC is particularly hazardous in the advanced stages, and there are few therapeutic strategies specifically targeting these stages. We performed analyses on CC tumor proteome dynamics and identified GSTM3 and GSTP1 as novel potential therapeutic targets. Knockdown of these proteins showed that they are involved in cell survival, cell proliferation and cellular evasion of apoptosis.

3.
Nature ; 541(7636): 233-236, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28052056

RESUMEN

Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Genoma/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Animales , Proteínas de Transporte de Anión/deficiencia , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Genómica , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Linfopenia/genética , Linfopenia/patología , Lisofosfolípidos/metabolismo , Masculino , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Microambiente Tumoral
4.
Cell ; 161(2): 319-32, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25843629

RESUMEN

Research over the past decade has suggested important roles for pseudogenes in physiology and disease. In vitro experiments demonstrated that pseudogenes contribute to cell transformation through several mechanisms. However, in vivo evidence for a causal role of pseudogenes in cancer development is lacking. Here, we report that mice engineered to overexpress either the full-length murine B-Raf pseudogene Braf-rs1 or its pseudo "CDS" or "3' UTR" develop an aggressive malignancy resembling human diffuse large B cell lymphoma. We show that Braf-rs1 and its human ortholog, BRAFP1, elicit their oncogenic activity, at least in part, as competitive endogenous RNAs (ceRNAs) that elevate BRAF expression and MAPK activation in vitro and in vivo. Notably, we find that transcriptional or genomic aberrations of BRAFP1 occur frequently in multiple human cancers, including B cell lymphomas. Our engineered mouse models demonstrate the oncogenic potential of pseudogenes and indicate that ceRNA-mediated microRNA sequestration may contribute to the development of cancer.


Asunto(s)
Linfoma de Células B Grandes Difuso/genética , Proteínas Proto-Oncogénicas B-raf/genética , Seudogenes , ARN/metabolismo , Animales , Secuencia de Bases , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas B-raf/metabolismo
5.
MAbs ; 7(3): 516-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875140

RESUMEN

The B cell antigen receptor repertoire is highly diverse and constantly modified by clonal selection. High-throughput DNA sequencing (HTS) of the lymphocyte repertoire (Rep-Seq) represents a promising technology to explore such diversity ex-vivo and assist in the identification of antigen-specific antibodies based on molecular signatures of clonal selection. Therefore, integrative tools for repertoire reconstruction and analysis from antibody sequences are needed. We developed ImmunediveRity, a stand-alone pipeline primarily based in R programming for the integral analysis of B cell repertoire data generated by HTS. The pipeline integrates GNU software and in house scripts to perform quality filtering, sequencing noise correction and repertoire reconstruction based on V, D and J segment assignment, clonal origin and unique heavy chain identification. Post-analysis scripts generate a wealth of repertoire metrics that in conjunction with a rich graphical output facilitates sample comparison and repertoire mining. Its performance was tested with raw and curated human and mouse 454-Roche sequencing benchmarks providing good approximations of repertoire structure. Furthermore, ImmunediveRsity was used to mine the B cell repertoire of immunized mice with a model antigen, allowing the identification of previously validated antigen-specific antibodies, and revealing different and unexpected clonal diversity patterns in the post-immunization IgM and IgG compartments. Although ImmunediveRsity is similar to other recently developed tools, it offers significant advantages that facilitate repertoire analysis and repertoire mining. ImmunediveRsity is open source and free for academic purposes and it runs on 64 bit GNU/Linux and MacOS. Available at: https://bitbucket.org/ImmunediveRsity/immunediversity/.


Asunto(s)
Anticuerpos Monoclonales/genética , Especificidad de Anticuerpos/genética , Receptores de Antígenos de Linfocitos B/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Anticuerpos Monoclonales/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Ratones , Receptores de Antígenos de Linfocitos B/inmunología
6.
Mol Cancer Res ; 13(2): 211-22, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25244922

RESUMEN

Telomeres are repetitive sequence structures at the ends of linear chromosomes that consist of double-stranded DNA repeats followed by a short single-stranded DNA protrusion. Telomeres need to be replicated in each cell cycle and protected from DNA-processing enzymes, tasks that cells execute using specialized protein complexes such as telomerase (that includes TERT), which aids in telomere maintenance and replication, and the shelterin complex, which protects chromosome ends. These complexes are also able to interact with a variety of other proteins, referred to as the telomere interactome, to fulfill their biological functions and control signaling cascades originating from telomeres. Given their essential role in genomic maintenance and cell-cycle control, germline mutations in telomere-regulating proteins and their interacting partners have been found to underlie a variety of diseases and cancer-predisposition syndromes. These syndromes can be characterized by progressively shortening telomeres, in which carriers can present with organ failure due to stem cell senescence among other characteristics, or can also present with long or unprotected telomeres, providing an alternative route for cancer formation. This review summarizes the critical roles that telomere-regulating proteins play in cell-cycle control and cell fate and explores the current knowledge on different cancer-predisposing conditions that have been linked to germline defects in these proteins and their interacting partners.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Neoplasias/patología , Telómero/patología , Acortamiento del Telómero
7.
Genesis ; 53(2): 225-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25378133

RESUMEN

The CRISPR-Cas9 system consists of a site-specific, targetable DNA nuclease that holds great potential in gene editing and genome-wide screening applications. To apply the CRISPR-Cas9 system to these assays successfully, the rate at which Cas9 induces DNA breaks at undesired loci must be understood. We characterized the rate of Cas9 off-target activity in typical Cas9 experiments in two human and one mouse cell lines. We analyzed the Cas9 cutting activity of 12 gRNAs in both their targeted sites and ∼90 predicted off-target sites per gRNA. In a Cas9-based knockout experiment, gRNAs induced detectable Cas9 cutting activity in all on-target sites and in only a few off-target sites genome-wide in human 293FT, human-induced pluripotent stem (hiPS) cells, and mouse embryonic stem (ES) cells. Both the cutting rates and DNA repair patterns were highly correlated between the two human cell lines in both on-target and off-target sites. In clonal Cas9 cutting analysis in mouse ES cells, biallelic Cas9 cutting was observed with low off-target activity. Our results show that off-target activity of Cas9 is low and predictable by the degree of sequence identity between the gRNA and a potential off-target site. Off-target Cas9 activity can be minimized by selecting gRNAs with few off-target sites of near complementarity.


Asunto(s)
Células Madre Embrionarias/fisiología , Ingeniería Genética , Células Madre Pluripotentes Inducidas/fisiología , ARN Guía de Kinetoplastida/genética , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , División del ADN , Reparación del ADN , Endonucleasas/genética , Marcación de Gen , Células HEK293 , Humanos , Masculino , Ratones
8.
Nat Biotechnol ; 32(3): 267-73, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24535568

RESUMEN

Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genómica/métodos , Lentivirus/genética , ARN Guía de Kinetoplastida/genética , Animales , Biotecnología , Sistemas CRISPR-Cas/genética , Células Cultivadas , Células Madre Embrionarias , Biblioteca de Genes , Genoma/genética , Ratones , Interferencia de ARN , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...