Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(10): e20408, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842597

RESUMEN

Urban forests provide direct and indirect benefits to human well-being that are increasingly captured in residential property values. Remote Sensing (RS) can be used to measure a wide range of forest and vegetation parameters that allows for a more detailed and better understanding of their specific influences on housing prices. Herein, through a systematic literature review approach, we reviewed 89 papers (from 2010 to 2022) from 21 different countries that used RS data to quantify vegetation indices, forest and tree parameters of urban forests and estimated their influence on residential property values. The main aim of this study was to understand and provide insights into how urban forests influence residential property values based on RS studies. Although more studies were conducted in developed (n = 55, 61.7%) than developing countries (n = 34, 38.3%), the results indicated for the most part that increasing tree canopy cover on property and neighborhood level, forest size, type, greenness, and proximity to urban forests increased housing prices. RS studies benefited from spatially explicit repetitive data that offer superior efficiency to quantify vegetation, forest, and tree parameters of urban forests over large areas and longer periods compared to studies that used field inventory data. Through this work, we identify and underscore that urban forest benefits outweigh management costs and have a mostly positive influence on housing prices. Thus, we encourage further discussions about prioritizing reforestation and conservation of urban forests during the urban planning of cities and suburbs, which could support UN Sustainable Development Goals (SDGs) and urban policy reforms.

2.
Microorganisms ; 11(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36677365

RESUMEN

Environmental and economic costs demand a rapid transition to more sustainable farming systems, which are still heavily dependent on chemicals for crop protection. Despite their widespread application, powdery mildew (PM) and downy mildew (DM) continue to generate serious economic penalties for grape and wine production. To reduce these losses and minimize environmental impacts, it is important to predict infections with high confidence and accuracy, allowing timely and efficient intervention. This review provides an appraisal of the predictive tools for PM and DM in a vineyard, a specialized farming system characterized by high crop protection cost and increasing adoption of precision agriculture techniques. Different methodological approaches, from traditional mechanistic or statistic models to machine and deep learning, are outlined with their main features, potential, and constraints. Our analysis indicated that strategies are being continuously developed to achieve the required goals of ease of monitoring and timely prediction of diseases. We also discuss that scientific and technological advances (e.g., in weather data, omics, digital solutions, sensing devices, data science) still need to be fully harnessed, not only for modelling plant-pathogen interaction but also to develop novel, integrated, and robust predictive systems and related applied technologies. We conclude by identifying key challenges and perspectives for predictive modelling of phytopathogenic disease in vineyards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...