Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7998): 367-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092041

RESUMEN

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Hematopoyesis , Saco Vitelino , Humanos , Implantación del Embrión , Endodermo/citología , Endodermo/embriología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Saco Vitelino/citología , Saco Vitelino/embriología , Mesodermo/citología , Mesodermo/embriología , Células Madre Pluripotentes Inducidas/citología , Amnios/citología , Amnios/embriología , Cuerpos Embrioides/citología , Linaje de la Célula , Biología Evolutiva/métodos , Biología Evolutiva/tendencias
2.
Stem Cell Reports ; 18(8): 1721-1742, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478860

RESUMEN

Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts, based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner. Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols relative to our database of reference engineered samples, and as open-source, extensible code.


Asunto(s)
Ingeniería Celular , Programas Informáticos , Diferenciación Celular/genética , Ingeniería Celular/métodos , Miocitos Cardíacos , Hepatocitos
3.
Genome Biol ; 23(1): 73, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255944

RESUMEN

A major advantage of single cell RNA-sequencing (scRNA-Seq) data is the ability to reconstruct continuous ordering and trajectories for cells. Here we present TraSig, a computational method for improving the inference of cell-cell interactions in scRNA-Seq studies that utilizes the dynamic information to identify significant ligand-receptor pairs with similar trajectories, which in turn are used to score interacting cell clusters. We applied TraSig to several scRNA-Seq datasets and obtained unique predictions that improve upon those identified by prior methods. Functional experiments validate the ability of TraSig to identify novel signaling interactions that impact vascular development in liver organoids.Software https://github.com/doraadong/TraSig .


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Comunicación Celular , Análisis de Secuencia de ARN , Programas Informáticos
5.
Methods Mol Biol ; 2258: 17-28, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33340351

RESUMEN

Cell-fate determination is a function of cell-intrinsic and -extrinsic signaling cues. Understanding the design principles governing fate control in multicellular systems remains difficult to understand and analyze. To address the current challenges of spatial analysis of potential signaling events, we have developed a pipeline for assessment of the neighboring cells at defined areas in the vicinity of target cells using a newly defined concept of Neighborhood Impact Factor. We have used our pipeline to interrogate cellular decision-making in a genetically derived multi-lineage liver organoid from induced pluripotent stem cells. We examined endothelial versus hepatocyte fate determination for cells with similar expression level of an engineered driver gene circuit. Our analysis suggests that the relative level of gene expression to the neighbor population can control the final fate choice in our engineered liver multicellular system.


Asunto(s)
Linaje de la Célula , Rastreo Celular , Procesamiento de Imagen Asistido por Computador , Células Madre Pluripotentes Inducidas/fisiología , Microscopía Fluorescente , Diseño de Software , Animales , Comunicación Celular , Técnicas de Cultivo de Célula , Linaje de la Célula/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Morfogénesis , Organoides , Transducción de Señal , Esferoides Celulares , Nicho de Células Madre
6.
Cell Syst ; 12(1): 41-55.e11, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33290741

RESUMEN

Pluripotent stem cell (PSC)-derived organoids have emerged as novel multicellular models of human tissue development but display immature phenotypes, aberrant tissue fates, and a limited subset of cells. Here, we demonstrate that integrated analysis and engineering of gene regulatory networks (GRNs) in PSC-derived multilineage human liver organoids direct maturation and vascular morphogenesis in vitro. Overexpression of PROX1 and ATF5, combined with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, reprograms tissue GRNs and improves native liver functions, such as FXR signaling, CYP3A4 enzymatic activity, and stromal cell reactivity. The engineered tissues possess superior liver identity when compared with other PSC-derived liver organoids and show the presence of hepatocyte, biliary, endothelial, and stellate-like cell populations in single-cell RNA-seq analysis. Finally, they show hepatic functions when studied in vivo. Collectively, our approach provides an experimental framework to direct organogenesis in vitro by systematically probing molecular pathways and transcriptional networks that promote tissue development.


Asunto(s)
Redes Reguladoras de Genes , Organoides , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Redes Reguladoras de Genes/genética , Humanos , Hígado/fisiología
7.
Nat Cell Biol ; 22(9): 1143-1154, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32884147

RESUMEN

Transient modulation of the genes involved in immunity, without exerting a permanent change in the DNA code, can be an effective strategy to modulate the course of many inflammatory conditions. CRISPR-Cas9 technology represents a promising platform for achieving this goal. Truncation of guide RNA (gRNA) from the 5' end enables the application of a nuclease competent Cas9 protein for transcriptional modulation of genes, allowing multifunctionality of CRISPR. Here, we introduce an enhanced CRISPR-based transcriptional repressor to reprogram immune homeostasis in vivo. In this repressor system, two transcriptional repressors-heterochromatin protein 1 (HP1a) and Krüppel-associated box (KRAB)-are fused to the MS2 coat protein and subsequently recruited by gRNA aptamer binding to a nuclease competent CRISPR complex containing truncated gRNAs. With the enhanced repressor, we demonstrate transcriptional repression of the Myeloid differentiation primary response 88 (Myd88) gene in vitro and in vivo. We demonstrate that this strategy can efficiently downregulate Myd88 expression in lung, blood and bone marrow of Cas9 transgenic mice that receive systemic injection of adeno-associated virus (AAV)2/1-carrying truncated gRNAs targeting Myd88 and the MS2-HP1a-KRAB cassette. This downregulation is accompanied by changes in downstream signalling elements such as TNF-α and ICAM-1. Myd88 repression leads to a decrease in immunoglobulin G (IgG) production against AAV2/1 and AAV2/9 and this strategy modulates the IgG response against AAV cargos. It improves the efficiency of a subsequent AAV9/CRISPR treatment for repression of proprotein convertase subtilisin/kexin type 9 (PCSK9), a gene that, when repressed, can lower blood cholesterol levels. We also demonstrate that CRISPR-mediated Myd88 repression can act as a prophylactic measure against septicaemia in both Cas9 transgenic and C57BL/6J mice. When delivered by nanoparticles, this repressor can serve as a therapeutic modality to influence the course of septicaemia. Collectively, we report that CRISPR-mediated repression of endogenous Myd88 can effectively modulate the host immune response against AAV-mediated gene therapy and influence the course of septicaemia. The ability to control Myd88 transcript levels using a CRISPR-based synthetic repressor can be an effective strategy for AAV-based CRISPR therapies, as this pathway serves as a key node in the induction of humoral immunity against AAV serotypes.


Asunto(s)
Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Inmunomodulación/inmunología , Animales , Edición Génica/métodos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/inmunología , Proproteína Convertasa 9 , ARN Guía de Kinetoplastida/inmunología , Receptores de Superficie Celular/inmunología
8.
Sci Rep ; 8(1): 4530, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540740

RESUMEN

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.


Asunto(s)
Técnicas de Cocultivo/métodos , Diclofenaco/farmacocinética , Dispositivos Laboratorio en un Chip , Hígado/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Humanos , Procedimientos Analíticos en Microchip , Modelos Biológicos , Fenotipo , Ratas
9.
Trends Biotechnol ; 36(4): 415-429, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29229492

RESUMEN

Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids.


Asunto(s)
Morfogénesis , Organoides/fisiología , Células Madre Pluripotentes/fisiología , Biología de Sistemas , Animales , Comunicación Celular , Diferenciación Celular , Redes Reguladoras de Genes , Genómica , Humanos , Modelos Animales , Organoides/citología , Células Madre Pluripotentes/citología , Análisis de la Célula Individual , Biología Sintética , Ingeniería de Tejidos
10.
Biotechnol Bioeng ; 114(11): 2648-2659, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28667746

RESUMEN

A capability for analyzing complex cellular communication among tissues is important in drug discovery and development, and in vitro technologies for doing so are required for human applications. A prominent instance is communication between the gut and the liver, whereby perturbations of one tissue can influence behavior of the other. Here, we present a study on human gut-liver tissue interactions under normal and inflammatory contexts, via an integrative multi-organ platform comprising human liver (hepatocytes and Kupffer cells), and intestinal (enterocytes, goblet cells, and dendritic cells) models. Our results demonstrated long-term (>2 weeks) maintenance of intestinal (e.g., barrier integrity) and hepatic (e.g., albumin) functions in baseline interaction. Gene expression data comparing liver in interaction with gut, versus isolation, revealed modulation of bile acid metabolism. Intestinal FGF19 secretion and associated inhibition of hepatic CYP7A1 expression provided evidence of physiologically relevant gut-liver crosstalk. Moreover, significant non-linear modulation of cytokine responses was observed under inflammatory gut-liver interaction; for example, production of CXCR3 ligands (CXCL9,10,11) was synergistically enhanced. RNA-seq analysis revealed significant upregulation of IFNα/ß/γ signaling during inflammatory gut-liver crosstalk, with these pathways implicated in the synergistic CXCR3 chemokine production. Exacerbated inflammatory response in gut-liver interaction also negatively affected tissue-specific functions (e.g., liver metabolism). These findings illustrate how an integrated multi-tissue platform can generate insights useful for understanding complex pathophysiological processes such as inflammatory organ crosstalk. Biotechnol. Bioeng. 2017;114: 2648-2659. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Comunicación Celular/inmunología , Colon/inmunología , Hepatocitos/inmunología , Factores Inmunológicos/inmunología , Inflamación/inmunología , Macrófagos del Hígado/inmunología , Dispositivos Laboratorio en un Chip , Células CACO-2 , Células Cultivadas , Técnicas de Cocultivo/instrumentación , Citocinas/inmunología , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Inmunoensayo/instrumentación , Hígado/inmunología , Miniaturización , Integración de Sistemas
11.
Nat Commun ; 7: 10243, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26732624

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues.


Asunto(s)
Factor de Transcripción GATA6/farmacología , Regulación de la Expresión Génica/fisiología , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Hígado/crecimiento & desarrollo , Diferenciación Celular , Línea Celular , Humanos
12.
Biotechnol Bioeng ; 112(4): 777-87, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25384798

RESUMEN

In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications.


Asunto(s)
Hepatocitos/fisiología , Hidrogel de Polietilenoglicol-Dimetacrilato , Técnicas de Cultivo de Órganos/métodos , Andamios del Tejido , Reactores Biológicos , Supervivencia Celular , Factor de Crecimiento Epidérmico/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...