Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurogenet ; 28(3-4): 348-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24912584

RESUMEN

Linearly polarized light (POL) serves as an important cue for many animals, providing navigational information, as well as directing them toward food sources and reproduction sites. Many insects detect the celestial polarization pattern, or the linearly polarized reflections off of surfaces, such as water. Much progress has been made toward characterizing both retinal detectors and downstream circuit elements responsible for celestial POL vision in different insect species, yet much less is known about the neural basis of how polarized reflections are detected. We previously established a novel, fully automated behavioral assay for studying the spontaneous orientation response of Drosophila melanogaster populations to POL stimuli presented to either the dorsal, or the ventral halves of the retina. We identified separate retinal detectors mediating these responses: the 'Dorsal Rim Area' (DRA), which had long been implicated in celestial POL vision, as well as a previously uncharacterized 'ventral polarization area' (VPA). In this study, we investigate whether DRA and VPA use the same or different downstream circuitry, for mediating spontaneous behavioral responses. We use homozygous mutants, or molecular genetic circuit-breaking tools (silencing, as well as rescue of synaptic activity), in combination with our behavioral paradigm. We show that responses to dorsal versus ventral stimulation involve previously characterized optic lobe neurons, like lamina monopolar cell L2 and medulla cell types Dm8/Tm5c. However, using different experimental conditions, we show that important differences exist between the requirement of these cell types downstream of DRA versus VPA. Therefore, while the neural circuits underlying behavioral responses to celestial and reflected POL cues share important building blocks, these elements play different functional roles within the network.


Asunto(s)
Conducta Animal/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Retina/fisiología , Animales , Señales (Psicología) , Drosophila/fisiología , Orientación/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-24810784

RESUMEN

Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue ('polarotaxis'), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors.


Asunto(s)
Aceleración , Señales (Psicología) , Drosophila/fisiología , Locomoción/fisiología , Orientación/fisiología , Percepción Espacial/fisiología , Animales , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Femenino , Luz , Modelos Lineales , Dinámicas no Lineales , Rotación , Rayos Ultravioleta , Vías Visuales/fisiología
3.
Curr Biol ; 22(1): 12-20, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22177904

RESUMEN

BACKGROUND: Linearly polarized light originates from atmospheric scattering or surface reflections and is perceived by insects, spiders, cephalopods, crustaceans, and some vertebrates. Thus, the neural basis underlying how this fundamental quality of light is detected is of broad interest. Morphologically unique, polarization-sensitive ommatidia exist in the dorsal periphery of many insect retinas, forming the dorsal rim area (DRA). However, much less is known about the retinal substrates of behavioral responses to polarized reflections. SUMMARY: Drosophila exhibits polarotactic behavior, spontaneously aligning with the e-vector of linearly polarized light, when stimuli are presented either dorsally or ventrally. By combining behavioral experiments with genetic dissection and ultrastructural analyses, we show that distinct photoreceptors mediate the two behaviors: inner photoreceptors R7+R8 of DRA ommatidia are necessary and sufficient for dorsal polarotaxis, whereas ventral responses are mediated by combinations of outer and inner photoreceptors, both of which manifest previously unknown features that render them polarization sensitive. CONCLUSIONS: Drosophila uses separate retinal pathways for the detection of linearly polarized light emanating from the sky or from shiny surfaces. This work establishes a behavioral paradigm that will enable genetic dissection of the circuits underlying polarization vision.


Asunto(s)
Células Fotorreceptoras de Invertebrados/fisiología , Retina/fisiología , Animales , Conducta Animal , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinaminas/genética , Femenino , Luz , Masculino , Fenómenos Fisiológicos Oculares , Orientación , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Visión Ocular
4.
Curr Biol ; 18(9): R378-80, 2008 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18460316

RESUMEN

What are the neural correlates of vision? A recent study on Drosophila has described the incredible neuronal diversity in the fly visual system, and traced the circuits that underlie color vision.


Asunto(s)
Percepción de Color/fisiología , Drosophila/citología , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Animales , Drosophila/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA