Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498853

RESUMEN

Sphingosine kinase 1 (SPHK1) and the sphingosine-1-phosphate (S1P) signaling pathway have been shown to play a role in pulmonary arterial hypertension (PAH). S1P is an important stimulus for pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary vascular remodeling. We aimed to examine the specific roles of SPHK1 in PASMCs during pulmonary hypertension (PH) progression. We generated smooth muscle cell-specific, Sphk1-deficient (Sphk1f/f TaglnCre+) mice and isolated Sphk1-deficient PASMCs from SPHK1 knockout mice. We demonstrated that Sphk1f/f TaglnCre+ mice are protected from hypoxia or hypoxia/Sugen-mediated PH, and pulmonary vascular remodeling and that Sphk1-deficient PASMCs are less proliferative compared with ones isolated from wild-type (WT) siblings. S1P or hypoxia activated yes-associated protein 1 (YAP1) signaling by enhancing its translocation to the nucleus, which was dependent on SPHK1 enzymatic activity. Further, verteporfin, a pharmacologic YAP1 inhibitor, attenuated the S1P-mediated proliferation of hPASMCs, hypoxia-mediated PH, and pulmonary vascular remodeling in mice and hypoxia/Sugen-mediated severe PH in rats. Smooth muscle cell-specific SPHK1 plays an essential role in PH via YAP1 signaling, and YAP1 inhibition may have therapeutic potential in treating PH.


Asunto(s)
Hipertensión Pulmonar , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas Señalizadoras YAP , Animales , Ratones , Ratas , Proliferación Celular , Células Cultivadas , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Remodelación Vascular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Señalizadoras YAP/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 321(4): H702-H715, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448637

RESUMEN

Although pulmonary arterial hypertension (PAH) leads to right ventricle (RV) hypertrophy and structural remodeling, the relative contributions of changes in myocardial geometric and mechanical properties to systolic and diastolic chamber dysfunction and their time courses remain unknown. Using measurements of RV hemodynamic and morphological changes over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we discriminated the contributions of RV geometric remodeling and alterations of myocardial material properties to changes in systolic and diastolic chamber function. Significant and rapid RV hypertrophic wall thickening was sufficient to stabilize ejection fraction in response to increased pulmonary arterial pressure by week 4 without significant changes in systolic myofilament activation. After week 4, RV end-diastolic pressure increased significantly with no corresponding changes in end-diastolic volume. Significant RV diastolic chamber stiffening by week 5 was not explained by RV hypertrophy. Instead, model analysis showed that the increases in RV end-diastolic chamber stiffness were entirely attributable to increased resting myocardial material stiffness that was not associated with significant myocardial fibrosis or changes in myocardial collagen content or type. These findings suggest that whereas systolic volume in this model of RV pressure overload is stabilized by early RV hypertrophy, diastolic dilation is prevented by subsequent resting myocardial stiffening.NEW & NOTEWORTHY Using a novel combination of hemodynamic and morphological measurements over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we found that compensated systolic function was almost entirely explained by RV hypertrophy, but subsequently altered RV end-diastolic mechanics were primarily explained by passive myocardial stiffening that was not associated with significant collagen extracellular matrix accumulation.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipertensión Arterial Pulmonar/complicaciones , Disfunción Ventricular Derecha/etiología , Función Ventricular Derecha , Remodelación Ventricular , Animales , Fenómenos Biomecánicos , Diástole , Modelos Animales de Enfermedad , Fibrosis , Ventrículos Cardíacos/patología , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Modelos Cardiovasculares , Miocardio/patología , Hipertensión Arterial Pulmonar/fisiopatología , Ratas Sprague-Dawley , Sístole , Factores de Tiempo , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología
3.
J Biomech Eng ; 141(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31299076

RESUMEN

Pulmonary arterial hypertension (PAH) commonly leads to right ventricular (RV) hypertrophy and fibrosis that affect the mechanical properties of the RV myocardium (MYO). To investigate the effects of PAH on the mechanics of the RV MYO and extracellular matrix (ECM), we compared RV wall samples, isolated from rats in which PAH was induced using the SuHx protocol, with samples from control animals before and after the tissues were decellularized. Planar biaxial mechanical testing, a technique first adapted to living soft biological tissues by Fung, was performed on intact and decellularized samples. Fung's anisotropic exponential strain energy function fitted the full range of biaxial test results with high fidelity in control and PAH samples both before and after they were decellularized. Mean RV myocardial apex-to-outflow tract and circumferential stresses during equibiaxial strain were significantly greater in PAH than control samples. Mean RV ECM circumferential but not apex-to-outflow tract stresses during equibiaxial strain were significantly greater in the PAH than control group. The ratio of ECM to myocardial stresses at matched strains did not change significantly between groups. Circumferential stresses were significantly higher than apex-to-outflow tract stresses for all groups. These findings confirm the predictions of a mathematical model based on changes in RV hemodynamics and morphology in rat PAH, and may provide a foundation for a new constitutive analysis of the contributions of ECM remodeling to changes in RV filling properties during PAH.

4.
Pulm Circ ; 8(4): 2045894018800439, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175690

RESUMEN

Right-ventricular function is a good indicator of pulmonary arterial hypertension (PAH) prognosis; however, how the right ventricle (RV) adapts to the pressure overload is not well understood. Here, we aimed at characterizing the time course of RV early remodeling and discriminate the contribution of ventricular geometric remodeling and intrinsic changes in myocardial mechanical properties in a monocrotaline (MCT) animal model. In a longitudinal study of PAH, ventricular morphology and function were assessed weekly during the first four weeks after MCT exposure. Using invasive measurements of RV pressure and volume, heart performance was evaluated at end of systole and diastole to quantify contractility (end-systolic elastance) and chamber stiffness (end-diastolic elastance). To distinguish between morphological and intrinsic mechanisms, a computational model of the RV was developed and used to determine the level of prediction when accounting for wall masses and unloaded volume measurements changes. By four weeks, mean pulmonary arterial pressure and elastance rose significantly. RV pressures rose significantly after the second week accompanied by significant RV hypertrophy, but RV stroke volume and cardiac output were maintained. The model analysis suggested that, after two weeks, this compensation was only possible due to a significant increase in the intrinsic inotropy of RV myocardium. We conclude that this MCT-PAH rat is a model of RV compensation during the first month after treatment, where geometric remodeling on EDPVR and increased myocardial contractility on ESPVR are the major mechanisms by which stroke volume is preserved in the setting of elevated pulmonary arterial pressure. The mediators of this compensation might themselves promote longer-term adverse remodeling and decompensation in this animal model.

5.
Physiol Rep ; 6(3)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29411543

RESUMEN

A longitudinal study of monocrotaline-induced pulmonary arterial hypertension (PAH) was carried out in Sprague-Dawley rats to investigate the changes in impedance (comprising resistance and compliance) produced by elevated blood pressure. Using invasively measured blood flow as an input, blood pressure was predicted using 3- and 4-element Windkessel (3WK, 4WK) type lumped-parameter models. Resistance, compliance, and inductance model parameters were obtained for the five different treatment groups via least-squares errors. The treated animals reached levels of hypertension, where blood pressure increased two folds from control to chronic stage of PAH (mean pressure went from 24 ± 5 to 44 ± 6 mmHg, P < 0.0001) but blood flow remained overall unaffected. Like blood pressure, the wave-reflection coefficient significantly increased at the advanced stage of PAH (0.26 ± 0.09 to 0.52 ± 0.09, P < 0.0002). Our modeling efforts revealed that resistances and compliance changed during the disease progression, where changes in compliance occur before the changes in resistance. However, resistance and compliance are not directly inversely related. As PAH develops, resistances increase nonlinearly (Rd exponentially and R at a slower rate) while compliance linearly decreases. And while 3WK and 4WK models capture the pressure-flow relation in the pulmonary vasculature during PAH, results from Akaike Information Criterion and sensitivity analysis allow us to conclude that the 3WK is the most robust and accurate model for this system. Ninety-five percent confidence intervals of the predicted model parameters are included for the population studied. This work establishes insight into the complex remodeling process occurring in PAH.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Modelos Cardiovasculares , Arteria Pulmonar/fisiopatología , Animales , Hemodinámica , Hipertensión Pulmonar/etiología , Masculino , Monocrotalina/toxicidad , Ratas , Ratas Sprague-Dawley
6.
J Biomech Eng ; 138(11)2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27685536

RESUMEN

In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.


Asunto(s)
Presión Sanguínea , Hipertensión Pulmonar/fisiopatología , Modelos Cardiovasculares , Arteria Pulmonar/fisiopatología , Animales , Anisotropía , Fuerza Compresiva , Simulación por Computador , Módulo de Elasticidad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Masculino , Monocrotalina , Arteria Pulmonar/ultraestructura , Ratas , Ratas Sprague-Dawley , Resistencia al Corte , Estrés Mecánico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...