Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526062

RESUMEN

Intrinsic rates of genetic mutation have diverged greatly across taxa and exhibit statistical associations with several other parameters and features. These include effective population size (Ne), genome size, and gametic multicellularity, with the latter being associated with both increased mutation rates and decreased effective population sizes. However, data sufficient to test for possible relationships between microbial multicellularity and mutation rate (µ) are lacking. Here, we report estimates of two key population-genetic parameters, Ne and µ, for Myxococcus xanthus, a bacterial model organism for the study of aggregative multicellular development, predation, and social swarming. To estimate µ, we conducted an ∼400-day mutation accumulation experiment with 46 lineages subjected to regular single colony bottlenecks prior to clonal regrowth. Upon conclusion, we sequenced one clonal-isolate genome per lineage. Given collective evolution for 85,323 generations across all lines, we calculate a per base-pair mutation rate of ∼5.5 × 10-10 per site per generation, one of the highest mutation rates among free-living eubacteria. Given our estimate of µ, we derived Ne at ∼107 from neutral diversity at four-fold degenerate sites across two dozen M. xanthus natural isolates. This estimate is below average for eubacteria and strengthens an already clear negative correlation between µ and Ne in prokaryotes. The higher and lower than average mutation rate and Ne for M. xanthus, respectively, amplify the question of whether any features of its multicellular life cycle-such as group-size reduction during fruiting-body development-or its highly structured spatial distribution have significantly influenced how these parameters have evolved.


Asunto(s)
Tasa de Mutación , Myxococcus xanthus , Myxococcus xanthus/genética , Densidad de Población , Genoma Bacteriano
2.
PLoS Biol ; 22(1): e3002454, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38261596

RESUMEN

Ecological variation influences the character of many biotic interactions, but examples of predator-prey reversal mediated by abiotic context are few. We show that the temperature at which prey grow before interacting with a bacterial predator can determine the very direction of predation, reversing predator and prey identities. While Pseudomonas fluorescens reared at 32°C was extensively killed by the generalist predator Myxococcus xanthus, P. fluorescens reared at 22°C became the predator, slaughtering M. xanthus to extinction and growing on its remains. Beyond M. xanthus, diffusible molecules in P. fluorescens supernatant also killed 2 other phylogenetically distant species among several examined. Our results suggest that the sign of lethal microbial antagonisms may often change across abiotic gradients in natural microbial communities, with important ecological and evolutionary implications. They also suggest that a larger proportion of microbial warfare results in predation-the killing and consumption of organisms-than is generally recognized.


Asunto(s)
Microbiota , Myxococcus xanthus , Animales , Conducta Predatoria , Antibiosis , Evolución Biológica
3.
iScience ; 26(7): 106952, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37332671

RESUMEN

Many microbial phenotypes are density-dependent, including group-level phenotypes emerging from cooperation. However, surveys for the presence of a particular form of density dependence across diverse species are rare, as are direct tests for the Allee effect, i.e., positive density dependence of fitness. Here, we test for density-dependent growth under acid stress in five diverse bacterial species and find the Allee effect in all. Yet social protection from acid stress appears to have evolved by multiple mechanisms. In Myxococcus xanthus, a strong Allee effect is mediated by pH-regulated secretion of a diffusible molecule by high-density populations. In other species, growth from low density under acid stress was not enhanced by high-density supernatant. In M. xanthus, high cell density may promote predation on other microbes that metabolically acidify their environment, and acid-mediated density dependence may impact the evolution of fruiting-body development. More broadly, high density may protect most bacterial species against acid stress.

4.
Genes (Basel) ; 14(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239421

RESUMEN

By targeting mRNA transcripts, non-coding small RNAs (sRNAs) regulate the expression of genes governing a wide range of bacterial functions. In the social myxobacterium Myxococcus xanthus, the sRNA Pxr serves as a gatekeeper of the regulatory pathway controlling the life-cycle transition from vegetative growth to multicellular fruiting body development. When nutrients are abundant, Pxr prevents the initiation of the developmental program, but Pxr-mediated inhibition is alleviated when cells starve. To identify genes essential for Pxr function, a developmentally defective strain in which Pxr-mediated blockage of development is constitutively active (strain "OC") was transposon-mutagenized to identify suppressor mutations that inactivate or bypass Pxr inhibition and thereby restore development. One of the four loci in which a transposon insertion restored development is rnd, encoding the Ribonuclease D protein (RNase D). RNase D is an exonuclease important for tRNA maturation. Here, we show that disruption of rnd abolishes the accumulation of Pxr-S, the product of Pxr processing from a longer precursor form (Pxr-L) and the active inhibitor of development. Additionally, the decrease in Pxr-S caused by rnd disruption was associated with increased accumulation primarily of a longer novel Pxr-specific transcript (Pxr-XL) rather than of Pxr-L. The introduction of a plasmid expressing rnd reverted cells back to OC-like phenotypes in development and Pxr accumulation, indicating that a lack of RNase D alone suppresses the developmental defect of OC. Moreover, an in vitro Pxr-processing assay demonstrated that RNase D processes Pxr-XL into Pxr-L; this implies that overall, Pxr sRNA maturation requires a sequential two-step processing. Collectively, our results indicate that a housekeeping ribonuclease plays a central role in a model form of microbial aggregative development. To our knowledge, this is the first evidence implicating RNase D in sRNA processing.


Asunto(s)
Myxococcales , ARN Pequeño no Traducido , Ribonucleasa III/genética , ARN Bacteriano/genética , Myxococcales/genética , Supresión Genética , ARN Pequeño no Traducido/genética
5.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168390

RESUMEN

Ecological context often modifies biotic interactions, yet effects of ecological history are poorly understood. In experiments with the bacterium Myxococcus xanthus , resource-level histories of genotypes interacting during cooperative multicellular development were found to strongly regulate social fitness. Yet how developmental spore production responded to variation in resource-level histories between interactants differed greatly between cooperators and cheaters; relative-fitness advantages gained by cheating after high-resource growth were generally reduced or absent if one or both parties experienced low-resource growth. Low-resource growth also eliminated facultative exploitation in some pairwise mixes of cooperation-proficient natural isolates that occurs when both strains have grown under resource abundance. Our results contrast with previous studies in which cooperator fitness correlated positively with resource level and suggest that resource-level variation may be important in regulating whether exploitation of cooperators occurs in a natural context.

7.
BMC Ecol Evol ; 22(1): 141, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510120

RESUMEN

BACKGROUND: Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals. Some strains (cheaters) are unable to sporulate effectively in pure culture due to mutations that reduce signal production but can exploit and outcompete cooperators within mixed groups. RESULTS: In this study, interactions between a cheater disrupted at the signaling gene csgA and allopatrically diversified cooperators reveal a very small cheating range. Expectedly, the cheater failed to cheat on all natural-isolate cooperators owing to non-cheater-specific antagonisms. Surprisingly, some lab-evolved cooperators had already exited the csgA mutant's cheating range after accumulating fewer than 20 mutations and without experiencing cheating during evolution. Cooperators might also diversify in the potential for a mutation to reduce expression of a cooperative trait or generate a cheating phenotype. A new csgA mutation constructed in several highly diverged cooperators generated diverse sporulation phenotypes, ranging from a complete defect to no defect, indicating that genetic backgrounds can limit the set of genomes in which a mutation creates a defector. CONCLUSIONS: Our results demonstrate that natural populations may feature geographic mosaics of cooperators that have diversified in their susceptibility to particular cheaters, limiting defectors' cheating ranges and preventing them from spreading. This diversification may also lead to variation in the phenotypes generated by any given cooperation-gene mutation, further decreasing the chance of a cheater emerging which threatens the persistence of cooperation in the system.


Asunto(s)
Myxococcus xanthus , Myxococcus xanthus/genética , Mutación , Fenotipo , Genotipo , Genoma
8.
Commun Biol ; 5(1): 977, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114258

RESUMEN

Ecological causes of developmental evolution, for example from predation, remain much investigated, but the potential importance of latent phenotypes in eco-evo-devo has received little attention. Using the predatory bacterium Myxococcus xanthus, which undergoes aggregative fruiting body development upon starvation, we tested whether adaptation to distinct growth environments that do not induce development latently alters developmental phenotypes under starvation conditions that do induce development. In an evolution experiment named MyxoEE-3, growing M. xanthus populations swarmed across agar surfaces while adapting to conditions varying at factors such as surface stiffness or prey identity. Such ecological variation during growth was found to greatly impact the latent evolution of development, including fruiting body morphology, the degree of morphological trait correlation, reaction norms, degrees of developmental plasticity and stochastic diversification. For example, some prey environments promoted retention of developmental proficiency whereas others led to its systematic loss. Our results have implications for understanding evolutionary interactions among predation, development and motility in myxobacterial life cycles, and, more broadly, how ecology can profoundly shape the evolution of developmental systems latently rather than by direct selection on developmental features.


Asunto(s)
Myxococcus xanthus , Conducta Predatoria , Agar , Animales , Myxococcus xanthus/genética , Fenotipo
9.
Front Microbiol ; 13: 817080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359737

RESUMEN

The ability to perceive and respond to environmental change is essential to all organisms. In response to nutrient depletion, cells of the soil-dwelling δ-proteobacterium Myxococcus xanthus undergo collective morphogenesis into multicellular fruiting bodies and transform into stress-resistant spores. This process is strictly regulated by gene networks that incorporate both inter- and intracellular signals. While commonly studied M. xanthus reference strains and some natural isolates undergo development only in nutrient-poor conditions, some lab mutants and other natural isolates commit to development at much higher nutrient levels, but mechanisms enabling such rich medium development remain elusive. Here we investigate the genetic basis of rich medium development in one mutant and find that a single amino acid change (S534L) in RpoB, the ß-subunit of RNA polymerase, is responsible for the phenotype. Ectopic expression of the mutant rpoB allele was sufficient to induce nutrient-rich development. These results suggest that the universal bacterial transcription machinery bearing the altered ß-subunit can relax regulation of developmental genes that are normally strictly controlled by the bacterial stringent response. Moreover, the mutation also pleiotropically mediates a tradeoff in fitness during vegetative growth between high vs. low nutrient conditions and generates resistance to exploitation by a developmental cheater. Our findings reveal a previously unknown connection between the universal transcription machinery and one of the most behaviorally complex responses to environmental stress found among bacteria.

10.
Proc Biol Sci ; 288(1963): 20211522, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34814750

RESUMEN

Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners-a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.


Asunto(s)
Evolución Biológica , Myxococcus xanthus , Genotipo , Myxococcus xanthus/genética
11.
Microorganisms ; 9(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34683400

RESUMEN

Predator impacts on prey diversity are often studied among higher organisms over short periods, but microbial predator-prey systems allow examination of prey-diversity dynamics over evolutionary timescales. We previously showed that Escherichia coli commonly evolved minority mucoid phenotypes in response to predation by the bacterial predator Myxococcus xanthus by one time point of a coevolution experiment now named MyxoEE-6. Here we examine mucoid frequencies across several MyxoEE-6 timepoints to discriminate between the hypotheses that mucoids were increasing to fixation, stabilizing around equilibrium frequencies, or heading to loss toward the end of MyxoEE-6. In four focal coevolved prey populations, mucoids rose rapidly early in the experiment and then fluctuated within detectable minority frequency ranges through the end of MyxoEE-6, generating frequency dynamics suggestive of negative frequency-dependent selection. However, a competition experiment between mucoid and non-mucoid clones found a predation-specific advantage of the mucoid clone that was insensitive to frequency over the examined range, leaving the mechanism that maintains minority mucoidy unresolved. The advantage of mucoidy under predation was found to be associated with reduced population size after growth (productivity) in the absence of predators, suggesting a tradeoff between productivity and resistance to predation that we hypothesize may reverse mucoid vs non-mucoid fitness ranks within each MyxoEE-6 cycle. We also found that mucoidy was associated with diverse colony phenotypes and diverse candidate mutations primarily localized in the exopolysaccharide operon yjbEFGH. Collectively, our results show that selection from predatory bacteria can generate apparently stable sympatric phenotypic polymorphisms within coevolving prey populations and also allopatric diversity across populations by selecting for diverse mutations and colony phenotypes associated with mucoidy. More broadly, our results suggest that myxobacterial predation increases long-term diversity within natural microbial communities.

12.
Microorganisms ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201688

RESUMEN

Theory and empirical studies in metazoans predict that apex predators should shape the behavior and ecology of mesopredators and prey at lower trophic levels. Despite the ecological importance of microbial communities, few studies of predatory microbes examine such behavioral res-ponses and the multiplicity of trophic interactions. Here, we sought to assemble a three-level microbial food chain and to test for behavioral interactions between the predatory nematode Caenorhabditis elegans and the predatory social bacterium Myxococcus xanthus when cultured together with two basal prey bacteria that both predators can eat-Escherichia coli and Flavobacterium johnsoniae. We found that >90% of C. elegans worms failed to interact with M. xanthus even when it was the only potential prey species available, whereas most worms were attracted to pure patches of E. coli and F. johnsoniae. In addition, M. xanthus altered nematode predatory behavior on basal prey, repelling C. elegans from two-species patches that would be attractive without M. xanthus, an effect similar to that of C. elegans pathogens. The nematode also influenced the behavior of the bacterial predator: M. xanthus increased its predatory swarming rate in response to C. elegans in a manner dependent both on basal-prey identity and on worm density. Our results suggest that M. xanthus is an unattractive prey for some soil nematodes and is actively avoided when other prey are available. Most broadly, we found that nematode and bacterial predators mutually influence one another's predatory behavior, with likely consequences for coevolution within complex microbial food webs.

13.
Proc Biol Sci ; 288(1949): 20210456, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906400

RESUMEN

Evolutionary diversification can occur in allopatry or sympatry, can be driven by selection or unselected, and can be phenotypically manifested immediately or remain latent until manifested in a newly encountered environment. Diversification of host-parasite interactions is frequently studied in the context of intrinsically selective coevolution, but the potential for host-parasite interaction phenotypes to diversify latently during parasite-blind host evolution is rarely considered. Here, we use a social bacterium experimentally adapted to several environments in the absence of phage to analyse allopatric diversification of host quality-the degree to which a host population supports a viral epidemic. Phage-blind evolution reduced host quality overall, with some bacteria becoming completely resistant to growth suppression by phage. Selective-environment differences generated only mild divergence in host quality. However, selective environments nonetheless played a major role in shaping evolution by determining the degree of stochastic diversification among replicate populations within treatments. Ancestral motility genotype was also found to strongly shape patterns of latent host-quality evolution and diversification. These outcomes show that (i) adaptive landscapes can differ in how they constrain stochastic diversification of a latent phenotype and (ii) major effects of selection on biological diversification can be missed by focusing on trait means. Collectively, our findings suggest that latent-phenotype evolution should inform host-parasite evolution theory and that diversification should be conceived broadly to include latent phenotypes.


Asunto(s)
Parásitos , Animales , Evolución Biológica , Genotipo , Interacciones Huésped-Parásitos , Fenotipo
14.
BMC Evol Biol ; 20(1): 145, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148179

RESUMEN

BACKGROUND: Evolution in one selective environment often latently generates phenotypic change that is manifested only later in different environments, but the complexity of behavior important to fitness in the original environment might influence the character of such latent-phenotype evolution. Using Myxococcus xanthus, a bacterium possessing two motility systems differing in effectiveness on hard vs. soft surfaces, we test (i) whether and how evolution while swarming on one surface-the selective surface-latently alters motility on the alternative surface type and (ii) whether patterns of such latent-phenotype evolution depend on the complexity of ancestral motility, specific ancestral motility genotypes and/or the selective surface of evolution. We analysze an experiment in which populations established from three ancestral genotypes-one with both motility systems intact and two others with one system debilitated-evolved while swarming across either hard or soft agar in six evolutionary treatments. We then compare motility-phenotype patterns across selective vs. alternative surface types. RESULTS: Latent motility evolution was pervasive but varied in character as a function of the presence of one or two functional motility systems and, for some individual-treatment comparisons, the specific ancestral genotype and/or selective surface. Swarming rates on alternative vs. selective surfaces were positively correlated generally among populations with one functional motility system but not among those with two. This suggests that opportunities for pleiotropy and epistasis generated by increased genetic complexity underlying behavior can alter the character of latent-phenotype evolution. No tradeoff between motility performance across surface types was detected in the dual-system treatments, even after adaptation on a surface on which one motility system dominates strongly over the other in driving movement, but latent-phenotype evolution was instead idiosyncratic in these treatments. We further find that the magnitude of stochastic diversification at alternative-surface swarming among replicate populations greatly exceeded diversification of selective-surface swarming within some treatments and varied across treatments. CONCLUSION: Collectively, our results suggest that increases in the genetic and mechanistic complexity of behavior can increase the complexity of latent-phenotype evolution outcomes and illustrate that diversification manifested during evolution in one environment can be augmented greatly by diversification of latent phenotypes manifested later.


Asunto(s)
Evolución Molecular , Myxococcus xanthus , Adaptación Fisiológica , Genotipo , Movimiento , Myxococcus xanthus/citología , Myxococcus xanthus/genética , Fenotipo
15.
Curr Biol ; 30(23): 4745-4752.e4, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32976811

RESUMEN

Many microbes produce stress-resistant spores to survive unfavorable conditions [1-4] and enhance dispersal [1, 5]. Cooperative behavior is integral to the process of spore formation in some species [3, 6], but the degree to which germination of spore populations involves social interactions remains little explored. Myxococcus xanthus is a predatory soil bacterium that upon starvation forms spore-filled multicellular fruiting bodies that often harbor substantial diversity of endemic origin [7, 8]. Here we demonstrate that germination of M. xanthus spores formed during fruiting-body development is a social process involving at least two functionally distinct social molecules. Using pairs of natural isolates each derived from a single fruiting body that emerged on soil, we first show that spore germination exhibits positive density dependence due to a secreted "public-good" germination factor. Further, we find that a germination defect of one strain under saline stress in pure culture is complemented by addition of another strain that germinates well in saline environments and mediates cheating by the defective strain. Glycine betaine, an osmo-protectant utilized in all domains of life, is found to mediate saline-specific density dependence and cheating. Density dependence in non-saline conditions is mediated by a distinct factor, revealing socially complex spore germination involving multiple social molecules.


Asunto(s)
Betaína/metabolismo , Myxococcus xanthus/fisiología , Percepción de Quorum/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Microbiología del Suelo
16.
PLoS One ; 14(11): e0224817, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31774841

RESUMEN

In some species of myxobacteria, adjacent cells sufficiently similar at the adhesin protein TraA can exchange components of their outer membranes. The primary benefits of such outer membrane exchange (OME) in natural populations are unclear, but in some OME interactions, transferred OM content can include SitA toxins that kill OME participants lacking an appropriate immunity gene. Such OME-dependent toxin transfer across Myxococcus xanthus strains that differ only in their sitBAI toxin/antitoxin cassette can mediate inter-strain killing and generate colony-merger incompatibilities (CMIs)-inter-colony border phenotypes between distinct genotypes that differ from respective self-self colony interfaces. Here we ask whether OME-dependent toxin transfer is a common cause of prevalent CMIs and antagonisms between M. xanthus natural isolates identical at TraA. We disrupted traA in eleven isolates from a cm-scale soil population and assayed whether traA disruption eliminated or reduced CMIs between swarming colonies or antagonisms between strains in mixed cultures. Among 33 isolate pairs identical at traA that form clear CMIs, in no case did functional disruption of traA in one partner detectably alter CMI phenotypes. Further, traA disruption did not alleviate strong antagonisms observed during starvation-induced fruiting-body development in seven pairs of strains identical at traA. Collectively, our results suggest that most mechanisms of interference competition and inter-colony kin discrimination in natural populations of myxobacteria do not require OME. Finally, our experiments also indicate that several closely related laboratory reference strains kill some natural isolates by toxins delivered by a shared, OME-independent type VI secretion system (T6SS), suggesting that some antagonisms between sympatric natural isolates may also involve T6SS toxins.


Asunto(s)
Membrana Celular/metabolismo , Myxococcus xanthus/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Toxinas Bacterianas/metabolismo , Eliminación de Gen , Viabilidad Microbiana , Modelos Biológicos , Myxococcus xanthus/genética , Myxococcus xanthus/aislamiento & purificación , Plásmidos/genética
17.
Nat Commun ; 10(1): 4301, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541093

RESUMEN

Generalist bacterial predators are likely to strongly shape many important ecological and evolutionary features of microbial communities, for example by altering the character and pace of molecular evolution, but investigations of such effects are scarce. Here we report how predator-prey interactions alter the evolution of fitness, genomes and phenotypic diversity in coevolving bacterial communities composed of Myxococcus xanthus as predator and Escherichia coli as prey, relative to single-species controls. We show evidence of reciprocal adaptation and demonstrate accelerated genomic evolution specific to coevolving communities, including the rapid appearance of mutator genotypes. Strong parallel evolution unique to the predator-prey communities occurs in both parties, with predators driving adaptation at two prey traits associated with virulence in bacterial pathogens-mucoidy and the outer-membrane protease OmpT. Our results suggest that generalist predatory bacteria are important determinants of how complex microbial communities and their interaction networks evolve in natural habitats.


Asunto(s)
Bacterias/genética , Evolución Molecular , Interacciones Microbianas/genética , Interacciones Microbianas/fisiología , Microbiota/genética , Microbiota/fisiología , Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos/genética , Proteínas Bacterianas/genética , Coevolución Biológica , Escherichia coli/genética , Escherichia coli/fisiología , Aptitud Genética , Myxococcus xanthus/genética , Myxococcus xanthus/fisiología , Fenotipo , Porinas/genética , Virulencia
18.
Science ; 363(6433): 1342-1345, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30898932

RESUMEN

The composition of cooperative systems, including animal societies, organismal bodies, and microbial groups, reflects their past and shapes their future evolution. However, genomic diversity within many multiunit systems remains uncharacterized, limiting our ability to understand and compare their evolutionary character. We have analyzed genomic and social-phenotype variation among 120 natural isolates of the cooperative bacterium Myxococcus xanthus derived from six multicellular fruiting bodies. Each fruiting body was composed of multiple lineages radiating from a unique recent ancestor. Genomic evolution was concentrated in selection hotspots associated with evolutionary change in social phenotypes. Synonymous mutations indicated that kin lineages within the same fruiting body often first diverged from a common ancestor more than 100 generations ago. Thus, selection appears to promote endemic diversification of kin lineages that remain together over long histories of local interaction, thereby potentiating social coevolution.


Asunto(s)
Evolución Molecular , Genes Bacterianos , Interacciones Microbianas/genética , Myxococcus xanthus/genética , Selección Genética , Microbiología del Suelo , Alelos , Nucleotidiltransferasas/genética , Fenotipo
19.
Evol Dev ; 21(2): 82-95, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30762281

RESUMEN

Small non-coding RNAs (sRNAs) control bacterial gene expression involved in a wide range of important cellular processes. In the highly social bacterium Myxococcus xanthus, the sRNA Pxr prevents multicellular fruiting-body development when nutrients are abundant. Pxr was discovered from the evolution of a developmentally defective strain (OC) into a developmentally proficient strain (PX). In OC, Pxr is constitutively expressed and blocks development even during starvation. In PX, one mutation deactivates Pxr allowing development to proceed. We screened for transposon mutants that suppress the OC defect and thus potentially reveal new Pxr-pathway components. Insertions significantly restoring development were found in four genes-rnd, rnhA, stkA and Mxan_5793-not previously associated with an sRNA activity. Phylogenetic analysis suggests that the Pxr pathway was constructed within the Cystobacterineae suborder both by co-option of genes predating the Myxococcales order and incorporation of a novel gene (Mxan_5793). Further, the sequence similarity of rnd, rnhA and stkA homologs relative to M. xanthus alleles was found to decrease greatly among species beyond the Cystobacterineae suborder compared to the housekeeping genes examined. Finally, ecological context differentially affected the developmental phenotypes of distinct mutants, with implications for the evolution of development in variable environments.


Asunto(s)
Evolución Molecular , Myxococcus xanthus/genética , ARN Pequeño no Traducido/genética , Genoma Bacteriano , Mutagénesis Insercional , Myxococcus xanthus/crecimiento & desarrollo , Fenotipo , Filogenia
20.
Mol Ecol ; 27(15): 3146-3158, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29924883

RESUMEN

Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre-scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony-merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm-scale population. We find evidence of balancing selection on the highly variable PA14-portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME-mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.


Asunto(s)
Myxococcus xanthus/metabolismo , Alelos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Myxococcus xanthus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...