Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119918, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154218

RESUMEN

Clostridium autoethanogenum can to convert waste gases (CO2, CO, H2) and xylose from hydrolyzed biomass into acetate, lactate, formate, ethanol and 2,3-butanediol, being a candidate for the transformation of waste streams of lignocellulosic biorefineries. Electro-fermentation (EF) modify the pattern of traditional fermentations resulting in improved product yields as has been shown when using Clostridium strains. The aim of this work was to evaluate the influence of pH on microbial growth and product distribution during fermentation and EF of xylose by C. autoethanogenum DSM10061. Fermentation and EF were carried out in a H-type reactor at three controlled pH: 5.0, 5.5 and 5.8, and at a fixed potential of -600 mV (versus Ag/AgCl) in the EF. The experiments showed that maximum biomass concentration increased as the pH increased in fermentation and EF. In accordance with maximum biomass reached, the highest substrate conversion was observed at pH 5.8 for both systems, with 76.80 % in fermentation and 96.18 % in EF. Moreover, the highest concentrations of acetic acid (1.41 ± 0.07 g L-1) and ethanol (1.45 ± 0.15 g L-1) were obtained at the end of cultures in the EF at pH 5.8. The production of lactic and formic acid decreased by the application of the external potential regardless of the pH value, reaching the lowest productivity at pH 5.8. In contrast, the specific productivity of acetic acid and ethanol was lower in both fermentation and EF at the lowest pH. Furthermore, the presence of 0.06 g L-1 of 2,3-butanediol was only detected in EF at pH 5.8. The results revealed that EF modulated microbial metabolism, which can be explained by a possible increased generation of NADP+/NADPH cofactors, which would redirect the metabolic pathway to more reduced products.


Asunto(s)
Butileno Glicoles , Monóxido de Carbono , Xilosa , Fermentación , Xilosa/metabolismo , Clostridium/metabolismo , Redes y Vías Metabólicas , Ácido Acético/metabolismo , Etanol , Concentración de Iones de Hidrógeno
2.
Mol Microbiol ; 105(5): 777-793, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28628237

RESUMEN

In response to a variety of environmental cues, prokaryotes can switch between a motile and a sessile, biofilm-forming mode of growth. The regulatory mechanisms and signaling pathways underlying this switch are largely unknown in archaea but involve small winged helix-turn-helix DNA-binding proteins of the archaea-specific Lrs14 family. Here, we study the Lrs14 member AbfR1 of Sulfolobus acidocaldarius. Small-angle X-ray scattering data are presented, which are consistent with a model of dimeric AbfR1 in which dimerization occurs via an antiparallel coiled coil as suggested by homology modeling. Furthermore, solution structure data of AbfR1-DNA complexes suggest that upon binding DNA, AbfR1 induces deformations in the DNA. The wing residues tyrosine 84 and serine 87, which are phosphorylated in vivo, are crucial to establish stable protein-DNA contacts and their substitution with a negatively charged glutamate or aspartate residue inhibits formation of a nucleoprotein complex. Furthermore, mutation abrogates the cellular abundance and transcription regulatory function of AbfR1 and thus affects the resulting biofilm and motility phenotype of S. acidocaldarius. This work establishes a novel wHTH DNA-binding mode for Lrs14-like proteins and hints at an important role for protein phosphorylation as a signal transduction mechanism for the control of biofilm formation and motility in archaea.


Asunto(s)
Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Biopelículas/crecimiento & desarrollo , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica Arqueal/genética , Secuencias Hélice-Giro-Hélice , Fosforilación , Elementos Estructurales de las Proteínas , Sulfolobus/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...